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Abstract
Given the sophistication of recent type systems, unification-based
type-checking and inference can be a time-consuming phase of
compilation—especially when union types are combined with sub-
typing. It is natural to consider improving performance through
parallelism, but these algorithms are challenging to parallelize due
to complicated control structure and difficulties representing data
in a way that is both efficient and supports concurrency. We pro-
vide a solution to these problems based on the LVish approach to
deterministic-by-default parallel programming. We extend LVish
with a novel class of concurrent data structures: Saturating LVars,
which are the first LVars to safely release memory during the ob-
ject’s lifetime. Our new design allows us to achieve a parallel
speedup on worst-case (exponential) inputs of traditional Hindley-
Milner inference, and on the Typed-Racket type-checking algo-
rithm, which yields up an 8.46× parallel speedup on type-checking
examples drawn from the Racket repository.

1. Introduction
Recent programming language advances often rely on sophisticated
type systems [3, 4, 17, 31, 36], many of which incur a substantial
computational expense at type-inference or type-checking time.
In some cases, such as Liquid Haskell’s refinement types, it is
possible to offload this work to an optimized (SMT) solver [17].
In other cases—occurrence typing, dependent typing, and gradual
typing [35]—using an external solver is infeasible. Gradually-typed
languages, for example, may employ uncommonly expressive type
systems to capture idioms from dynamically typed programming.
For example, Typed Racket combines subtyping with flexible union
types, and the (+) operation ends up with a type that combines
several hundred distinct function signatures. As a consequence, the
Typed Racket repository1 contains individual files which take over
five minutes to typecheck.

In the era of ubiquitous parallel hardware, one idea is to par-
allelize these computationally expensive phases to reduce the
compile-edit-debug latency and enhance the software development
experience. Yet there has been little work on parallelizing compi-
lation of code below the granularity of a file or module, with the

1 http://github.com/plt/racket
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exception of register allocation [38] and flow analyses [26]. Fur-
ther, to the best of our knowledge, no prior work has parallelized
type-checking algorithms specifically.

Most type checkers involve a unification process that contains
latent parallelism but exhibits poor locality. A simple example
is Hindley-Milner type inference, in which distinct expressions
might be processed in parallel, but where each individual type
variable can gain information from distant parts of the program
(and therefore from different threads). Indeed, even in functional-
language implementations of type inference (such as the Haskell-
based implementation inside GHC), mutation is often used for
constraining type variables, complicating parallelization further.
Our goal is to parallelize despite these constraints, using linguistic
abstraction to enforce disciplined, monotonic use of mutable state
and minimize or eliminate unintended nondeterminism.

In this work we perform two experiments in parallel typecheck-
ing, and we use Haskell as our implementation language for writing
parallel checkers. Because type checking is a constraint satisfaction
problem, one strategy is to begin with a general constraint solver,
extending it to deal with type checking. Yet this has not been done
before, nor is it obviously easier than the approach we take here,
which instead takes as its starting point standard implementation
techniques for sequential type-checkers. Unfortunately, the mech-
anisms used to mutate type variables in these sequential checkers
(State and ST monads) do not generalize safely to the parallel case
while retaining referential transparency (which implies determinis-
tic parallelism). Moreover, as described in §5.1, using immutable
data structures with purely functional task parallelism (futures) is
not a good fit for this problem.

LVars for Type Variables? Fortunately, there are a class of syn-
chronization variables that are safe to share between computations
in a functional language without compromising determinism. Sin-
gle assignment variables, or IVars [2], are one early example in this
class, supported in Haskell via the Par monad [23]. More recently,
Kuper and Newton [18] introduced a generalization that enables de-
terministic, functional programs to synchronize on arbitrary mono-
tonic data structures, called LVars. LVars enable a general form
of deterministic-by-default parallel programming, implemented in
Haskell by the “LVish” library2. Previous work on LVars introduced
general-purpose LVar data structures including: (1) lock-free col-
lections with concurrent insertion (but not deletion), and (2) coun-
ters that increase monotonically. But application-specific LVars can
be constructed as well; in particular, LVars would seem to provide a
promising way to deal with type variables shared between threads.
A custom LVar could capture the partial order implied by type uni-
fication. However, two problems arise:

1. All published examples of LVars respond to conflicting infor-
mation by throwing an exception, which cannot be caught ex-
cept in the IO monad.

2 http://hackage.haskell.org/package/lvish

1 2015/2/24

http://github.com/plt/racket
http://hackage.haskell.org/package/lvish


2. While LVars are a good fit for And-parallelism—where threads
join information concurrently—they do not help with the Or-
parallelism found in some type systems, where speculative,
alternative additions of information must be considered.

Contributions In this paper, we solve these two problems and
demonstrate the first wall-clock parallel speedup on type infer-
ence. Specifically:

• We introduce Saturating LVars (§4), adding the capability for
both trapped-failure and memory reclamation—addressing a
major limitation of previous LVar designs. We use Saturat-
ing LVars in the process of speeding up an implementation of
Hindley-Milner type inference on some inputs.
• We develop a modular formulation of Or-parallel constraint

systems, parameterized by an algebra for manipulating streams
of partial solutions. We provide an efficient implementation of
this algebra using generators. We explain this system in the
simplified context of satisfiability problems ( §5).
• We then scale this architecture to the type system of a full blown

language (Typed Racket, §6) with a modestly widespread user
base, achieving both speedups due to deforestation and parallel
speedups.

2. LVars & LVish: Background
LVars generalize the earlier IVar model by allowing multiple writes.
Where IVars simply signal an error upon writing to an already-full
location, LVars allow the states to be joined in a monotonically
increasing fashion according to a partial order on the possible states
of the data structure. The state space (hereafter lattice) contains
two distinguished elements ⊥ and >—representing uninitialized
and error respectively—along with a partial ordering v. One way
to increase the state of an LVar is through a put operation that takes
the least upper bound of its current state and the argument to the
put.

LVars also allow a restricted form of read via the get operation.
Generalizing the blocking reads of IVars, this operation will block
until the LVar’s state has reached one of a designated subset of
the lattice’s elements, known as the threshold set. This set is,
semantically, an implicit argument to get; it allows us only to
observe that the LVar is above some element of the threshold set,
rather than its precise state. The threshold set Q is required to be
incompatible, that ∀a, b ∈ Q, a t b = >.

As a simple example, consider the lattice of natural numbers
ordered by the relation ≤. In the following program, two threads
race to write to an LVar lv:
do lv ← newMaxIntLVar

fork (put lv 1); put lv 2

Regardless of the order in which the threads write to lv, the join
operation ensures that the final state of lv is “2”—the lub of both
writes. As a result, we can freely share LVars between threads, safe
in the knowledge that we will deterministically receive a result (or
an error, in the case of the > state), because put operations always
commute.

In addition to thresholded get operations, changes to an LVar
can be observed through handlers (callbacks). When we attach a
handler to an LVar, it is called upon each change, and receives the
new state (or, in some cases the delta itself). For the maxIntLVar

shown above, we can attach a handler that is called each time the
maximum is increased. With a container LVar on the other hand—
such as a Set—the handler would be called on every element added
to the Set, e.g.:
addHandler setLV (λx → . . . )

One interesting aspect of handlers is that addHandler must
commute with puts. That is, upon adding the handler it fires for
all past and future elements of the set above. Later in this paper we
will see how the concept of handlers interacts with our proposed
extension, saturating LVars.

Finally, LVars also offer the option of reading their full contents
exactly, after they have been frozen. The freeze operation disal-
lows further modifications, raising an exception if this occurs. For
full determinism, freezing may only occur after a global barrier to
avoid races between put and freeze.

LVars, in practice In the implementation of the LVish library,
parallel computations are exposed through a Par monad. These
computations have type Par e s a, where: a is the return value
of the monadic Par computation; the s parameter keeps LVars from
being shared between different parallel regions (like the ST monad);
and the e type parameter documents the effect signature of the
computation. For example, a function over Ints that executes in
the LVish monad and also may put to an LVar, has this type:
foo :: (HasPut e) ⇒ Int → Par e s Int

The Par monad is further equipped with various functions to launch
parallel computations and extract their result:

runPar :: Det e ⇒ (∀ s. Par e s a) → a
runParNonDet :: (∀ s. Par e s a) → IO a

These ensure that only deterministic (Det) combinations of effects
are used from inside purely functional code, whereas nondetermin-
istic combinations require IO. Both of these runPar variants are
used to return pure Haskell results of type a. If one wishes to return
LVars, they use runParThenFreeze, which uses the implicit barrier
at the end of a runPar parallel region to guarantee a race-free freeze
of the result:
runParThenFreeze :: (Det e, DeepFrz a)

⇒ Par e NonFrzn a → FrzType a

Freezing has no runtime cost. Rather, FrzType is a type-level func-
tion (type family) that “casts” the monotonic/mutable version of the
LVar to a pure/immutable sister type. FrzType is associated with
the DeepFrz class and implemented by each LVar in the library.
(NonFrzn is a safety detail—placed in the s parameter to prevent
mutating LVars that were frozen in other runPar sessions.)

A note on notation Effect signatures are important to the LVish
library; some effects are only conditionally deterministic; for in-
stance, canceling read-only futures is fine, but canceling a call to
foo above would introduce an observable data-race. Yet effect sig-
natures are not central to the way we use LVars in this paper, so we
will abbreviate Par e s Int as Par Int, and mention effect con-
straints in the prose only where they are relevant.

3. And-Parallelism: Hindley-Milner Typing
We now have what we need to parallelize a type checking al-
gorithm. We begin with what is perhaps the most well-known
unification-based type inference algorithm: the Hindley-Milner
system [8].

Sequential Hindley-Milner The Hindley-Milner algorithm oper-
ates by walking over an expression, generating constraints over
type variables. These constraints are unified together to produce
a final typing judgement for the term. An implementation that uses
only immutable data would keep a store mapping type variables to
types: Map Var Type. Recursive calls in the unifier produce partial
maps that are joined together. This process is widely regarded as in-
efficient, and in practice even type checkers written in Haskell use
a mutable representation of type variables. In this case, an explicit
type variable store is unnecessary and monomorphic types can be
defined as:

2 2015/2/24



⊤

{}

{a=TInt} {a=b} {b=TBool} ….

{a=TInt,
b=TInt}

{a=TInt,
a=b} ….{a=TBool,

b=TBool}

Figure 1. The partial order for the store containing all type vari-
ables used in a type-inference execution. The two highlighted nodes
are incompatible—their lub is >.

data Mono s = TVar Name (STRef s (Maybe (Mono s)))
| TInt
| TFun (Mono s) (Mono s)

Here the type variable is represented directly by its pointer to
the mutable location. The STRef [21] allows a type variable to be
imperatively updated in the unify function, as shown below.
unify :: Mono s → Mono s → ST s ()
unify t1 t2 = do

case (t1, t2) of
(TVar v ref, t) → do
when (not (occurs v t)) (writeSTRef ref (Just t))

(t, TVar v ref) → do
when (not (occurs v t)) (writeSTRef ref (Just t))

(TFun t1 t2, TFun t1’ t2’) → do unify t1 t1’
unify t2 t2’

(TInt, TInt) → return ()
_ → error "can’t unify"

The infer function simply walks over the expression, unifying
type variables as they are found. For brevity, only the application
case is shown.
infer :: Env s → Term → ST s (Mono s)
infer env expr = case expr of
. . .
App e1 e2 → do
fnT ← infer env e1
arg ← infer env e2
res ← freshTVar ()
unify fnT (TFun arg res)
return res

Alas, in exchange for increased performance in the single
threaded case, it would appear that STRefs have destroyed our
opportunity for deterministic parallelism in this implementation!

Exploiting parallelism Fortunately, we can parallelize the algo-
rithm by switching from STRefs to LVars, and can even asyn-
chronously share type constraints between threads. The collec-
tion of type-variable constraints accumulated during type-checking
forms a partial order under unification (Figure 1). We can model
this state either with a single Map LVar or with an LVar per type
variable (TyVar)—we use the latter approach here.

A TyVar is an application-specific LVar that is either empty (un-
constrained) or filled with a type, and when additional types, con-
taining type variables, are joined into the TyVar via put, unification
is invoked recursively as a callback. With TyVars, the previous def-
inition of Mono changes to include:
data Mono s = TVar (TyVar s) | . . .

Figure 2. Hindley-Milner type inference on a generated term with
roughly a million nodes. The sequential (STRef) version is com-
pared against the LVish version. Note that even on one core, the
LVish version is still concurrent, sharing constraint information be-
tween concurrent computations via LVars. Experiments were per-
formed on a desktop-class Intel Xeon i5-3470, with GHC 7.8.3 and
+RTS -qa.

Because TyVars are simply a mutable pointer to a piece of im-
mutable data, the TyVar abstract datatype is easy to implement—
in contrast with container LVars that require complicated lock-free
algorithms.

Much of the type-checking code is fundamentally unchanged,
beyond replacing writeSTRef with the analogous operation on
TyVars and switching type signatures for their Par version. After
that refactoring, we can inject parallelism in the application case of
the infer, to then infer the types of both subexpressions in parallel:
infer :: Env → Term → Par Mono
infer env expr = case expr of
App e1 e2 → do
(fnT, arg) ← par2 (infer env e1) (infer env e2)
res ← freshTVar
unify fnT (TFun arg res)
return res

Here the par2 combinator simply executes two actions, returning
two values (a fork/join construct). We can also unify function types
in parallel, which is a fork with no join:
unify :: Mono → Mono → Par ()
unify (TFun t1 t2) (TFun t1’ t2’) = do
fork (unify t1 t1’)
unify t2 t2’

Note that unification called for (monotonic) side effects only. This
approach yields a speedup when used to implement a micro-ML
calculus and run on a synthetic benchmark (see Figure 2). (For
type-checking benchmarks drawn from actual code, see §6.) In
this case, the benchmark is a large program with 1000 copies of
a known-exponential nested-let expression. This is only a small
proof of concept—for real, large programs with Hindley Milner
inference, the challenge will be finding problems that take long
enough in practice (relative to the amount of memory they read)
that they are worth parallelizing. Nevertheless, with algorithms
such as Hindley-Milner—which perform well in the average case
but have dismal worst-case performance—we believe it is worth
researching parallelism as an “insurance policy” to ameliorate these
worst case outcomes.
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⊤

⊥

Saturated

⊥

⊤ whenSat
event

callback

empty /
uninitialized

top / throw exception

filled /
cons-
istent

Figure 3. Any valid LVar lattices is turned into a Saturating LVar
by adding an extra, penultimate state.

4. Saturating LVars: Trapped Failure
There is one problem with the formulation of Hindley-Milner type
inference in the previous section—what if two types do not unify?
If type-checking fails we would like to simply return False or
Nothing. But with implementation in the previous section this fail-
ure instead appears as incompatible puts, e.g. putting TInt and
TBool to an LVar. Further, in LVar-based programs, adding contra-
dictory information to an LVar always triggers the > state, which
in previous implementations of LVish meant throwing a Haskell
exception.

What is wrong with throwing an exception? Answering this
requires a bit of background. Haskell enables purely functional
but partial programming, and Haskell’s exception semantics [24]
requires that exceptions be handled only in the IO monad to retain
referential transparency. In this case, it is important that we keep
the type checking phase out of the IO monad. Because we aim for a
deterministic type checker, we should either use only determinism-
safe features (not IO) or reduce the amount of “trusted code” that
uses unsafe features that may introduce nondeterminism—most
especially avoiding Haskell’s infamous “unsafePerformIO”.

In fact, there are significant benefits to strictly deterministic
compilers, generally. The Nix package manager and NixOS oper-
ating system [9] have demonstrated the benefits that accrue from
compilation being a mathematical function from bits to bits. Writ-
ing a compiler and type-checker in Haskell with no IO (outside of
reading and writing files) is one way to achieve this goal.

Keeping failures in Par In order to avoid the exception handling
problem, we must capture and respond to type checking failures
within the Par monad. That is, when type variables gain conflicting
information, we want to simply return a value indicating no valid
substitution exists.

To enable trapped failures, we introduce Saturating LVars, de-
fined as an LVar whose lattice structure includes an additional state
Sat. Following the semantics for LVars in POPL’14 [20], such an
LVar is given by a five-tuple (D,v,⊥,>, Sat), extended to in-
clude the designated saturation state as well as the usual set of states
(D), partial order, and designated bottom and top states. It should
further hold that:

⊥,>, Sat ∈ D,⊥ 6= >, Sat 6= >

∀d ∈ D, (⊥ v d v >) ∧ (d v Sat ∨ d = >)

An example lattice extended with the Sat state is pictured in
Figure 3. While this convention is simple, its ramifications are not:

1. The only usable (incompatible) threshold set for performing
blocking read or adding a handler3 is {Sat}.

2. A saturating LVar’s state moves monotonically up the lattice,
but it does not monotonically gain information (bits). Notably
an LVar in the saturated state can be represented by as little as
one bit. This means that saturating LVars are the first LVars that
can release memory during their lifetime.

3. Computations whose only effect is to write to a Saturating LVar
can be cancelled if that LVar saturates (§4.1).

Because of the first restriction, saturating LVars become effectively
write only. Further, all Saturating LVars can provide the following
operations:
class DeepFrz lv ⇒ SatLVar lv where
saturate :: lv → Par () -- Force it to Sat state
whenSat :: lv → Par () → Par ()
isSat :: FrzType lv → Bool

This interface provides the ability to force LVars to saturate, re-
spond to saturation, and test for saturation after a parallel computa-
tion is complete.4

Of course, every saturating LVar provides specific methods out-
side of the common interface—methods for constraining a type
variable, inserting into a map or set, and so on. But even the com-
mon API is enough to consider some use cases.

Example use-cases Consider an application-specific LVar repre-
senting constraints upon a single variable. The Sat state would cor-
respond to conflicting constraints (i.e. failure). If we collect those
individual LVars into a container, such as a Map LVar, it could rep-
resent a complete environment of variable assignments. Thus we
would expect that the entire environment fails when any entry does.
Indeed, this is possible with the API we described above—before
inserting each variable in the Map, we attach a whenSat handler
which in turn calls saturate on the entire environment, propagat-
ing the failure, as in the following:
do env ← newEmptyMap

. . .
cv ← newConstrainedVar
whenSat cv (saturate env)
insert vr cv env

In fact, there’s more that a library can do to enable efficient com-
positions of LVars and saturating LVars. For example, we have pro-
duced a new, modified LVish library that supports saturating LVars
and in this library we provide:

• a SatMap data structure, which is a single LVar that maps keys
onto pure Haskell values that are instances of PartialJoinSemiLattice.
That is, multiple puts are allowed on the same key, and are
joined, but the join function may fail, saturating the entire
SatMap.
• a FiltSet data structure that takes advantage of saturated

LVars in a different way—it represents a dynamic collection
of not-yet-failed saturated LVars. We observe that the type
Set (Maybe a) is isomorphic to (Bool, Set a), that is, there’s
no need to store each element which has saturated. If we are in-
terested in collecting SatLVar’s that have not failed, then failed
LVars can be discarded at runtime, freeing memory and shrink-
ing the set’s physical size.

3 Actually, there is a safe way to add handlers that are notified of every put
to the SatLVar, but it requires that the handlers be attached at the point the
LVar is created, which prevents addHandler racing with saturate.
4 The LVar can only be tested for saturation with isSat after a parallel
region has ended and it is in a “frozen” state. Freezing LVars is covered in
detail in [20].
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insert(10) OLS Regression R2 goodness-of-fit
Map LVar 19.5ns 0.991
SatMap 18.4ns 0.993
Set LVar 18.5ns 0.989
FiltSet 91.1ns 0.990

Table 1. Microbenchmark: the cost of creating a new structure and
inserting ten new Int elements. The cost of this (comparatively)
cheap operation is measured by varying the number of iterations of
benchmark, and computing a linear regression between iterations
and cycles (above). All measurements are from the desktop plat-
form described in §6.3.

insert/sat/insert Set LVar FiltSet
cycles 17838 15160

bytes alloc 14733 14128
bytes copied 759 115

Table 2. Microbenchmark: the cost of inserting 10 Counter ele-
ments in a set, saturating the previous 10, and repeating N times.
The LVar.Set version must store the data as a set of nested LVars to
enable saturation of the inner variables. The FiltSet directly sup-
ports multiple assignments to a key, so requires one LVar rather than
10N+1. Above we regressN against cycles, and below we regress
against bytes allocated and bytes copied during garbage collection.
This verifies that the while the FiltSet benchmark allocatesO(N)
memory, it releases memory as it goes.

As we will see, we can use FiltSet to accumulate results from a
search process when dealing with type systems that include dis-
junction. Or, as a simpler example, consider implementing a pro-
gram analogous to the following query using a data structure of
type (FiltSet SatCounter):
SELECT MEDIAN(SIZE) FROM CLASSES WHERE SIZE < 30

While traversing a list of students in parallel, we can maintain a
set of counters that are updated with fetch-and-add, and are set to
saturate upon hitting a tally of 30. Over-threshold counters would
automatically be removed from the set, leaving only those which
are under the threshold at the end of the runParThenFreeze call.

In the Hindley-Milner type-checking case, we use saturating
LVars for each individual TyVar. Saturation does not come into play
in typing well-typed terms as in Figure 2. But when discovering
that a term is ill-typed, saturation (and as we will see below, can-
cellation) are relevant. Further, in other type systems, the SatMap

structure is useful for representing environments containing con-
straints, and a FiltSet can serve as the accumulator when search-
ing for a valid environment. These two data structures are part of
the parallel-type-checking toolkit we provide in our new library;
the microbenchmarks in Tables 1 and 2 show their performance
relative to more basic LVar counterpart data structures.

4.1 Saturation and Cancellation: a safe idiom
Because saturating LVars are write-only in parallel regions, a nat-
ural question arises: will threads continue blindly adding informa-
tion to an LVar that has already saturated? If the continuation of
the computation that saturates the LVar performs no other observ-
able side effects, it is better to cancel remaining computations in
response to saturation. But is this safe to do?

Cancellation is a feature supported by LVish and explored in
previous work [19]. In that work, however, cancellation was only
safe for LVish computations with get but never any kind of write
effect: e.g., put, freeze, or saturate. That restriction rules out can-
celing upon saturation, because to have saturation events in the first
place, we must perform writes to an LVar! The insight here is that,
based on the lattice structure of saturating LVars (Figure 3), after

saturation, all further writes have no observable effect (including
not triggering handlers). Indeed, we can phrase this assertion in the
terms of the previously published LVar semantics [20]:

Conjecture 1 (Safe-Cancellation). Every LVish program with store
S, such that for all writable LVars l, [l → Sat] ∈ S, is observa-
tionally equivalent to the program return () or ⊥ (divergence).

If the author of a particular application is amenable to convert-
ing potential nonterminating outcomes into cancelled ones, then
they could elect to leverage this property to cancel useless com-
putations. We restrict this the case of writing to a single saturating
LVar for simplicity. But how then do we enforce that a given sub-
computation can only write that LVar, while reading from arbitrarily
many other LVars? To accomplish this, we can use LVish’s effect-
tracking capabilities to formulate a safe withSatLVar idiom, which
runs a block of code with a ReadOnly effect signature, but with an
“escape hatch“ for modifying only the designated saturating LVar:
withSatLVar lv (λ modIt →
do (k,v) ← . . . readonly . . .

modIt (insert k v) -- Send out a write to lv
. . . readonly . . .)

In this example, lv is a SatMap, and the modIt function allows
executing code in a separate effect environment that allows writes,
but which can operate only on lv and no other LVar. Like most
programs with tracked effects, the type of withSatLVar is more
complicated than the code that uses it. The type withSatLVar makes
heavy use of the “e s” parameters which we have been eliding
when writing Par a rather than Par e s a. Here we show that full
type:
withSatLVar :: (SatLVar lv, ReadOnly e1, Det e0)

⇒ lv s1
→ ((∀ s0. lv s0 → Par e0 s0 ())

→ Par e1 s1 a)
→ Par e2 s1 (Maybe a)

Here the higher-rank type ensures that the computation passed
to modIt really can touch only one LVar. In exchange for this
harsh restriction, the effect environment e0 need not be in any
way connected to e1—but it must remain deterministic. Note that
because of the cancellation possibility, a Maybe value is returned. It
is Nothing if lv saturates and the computation is cancelled. In the
case of Hindley-Milner type inference, Nothing corresponds to a
type error found by the type checking algorithm.

5. Or-Parallelism: Satisfiability solvers
With LVish plus the saturating LVar extension, we’ve acquired the
first tools in our parallel type-checking toolbox, enabling us to han-
dle parallel conjunctions over constraint-generating computations.
Indeed, Hindley-Milner type inference required only conjunction,
never disjunction. In this section we begin to address a broader—
and more expensive in practice—class of type checking algorithms:
those with Or-parallelism. This is challenging, because we can-
not directly employ LVars the way we did in the previous section
(mapping each type variable to exactly one LVar and updating it de-
structively). Nevertheless, Or-parallelism is a core feature of Typed
Racket, the type system that is our main target in this paper (§6).
Yet rather than dive directly into Typed Racket in this section, we
first introduce the implementation techniques using a smaller ex-
ample with conjunctions and disjunctions: satisfiability (SAT).

Parallel Constraint Solving Type systems are a particular flavor
of constraint problem. Indeed, if we view parallel type checking as
a parallel constraint satisfaction problem, we can look for guidance
from previous work on parallel logic programming [6, 13] and
parallel constraint solvers [11, 27, 37]. Unfortunately, the data-
structures and synchronization strategies employed in these works
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generic :: ∀ a b. Eq a ⇒
Ringlike (Vector (Var,a)) b → Tree a → b

generic Ringlike{mkNum,mkZer,add,mul} tr0 =
case tr0 of Left at → loop1 at

Right ot → loop2 ot
where
loop1 :: AndTree a → b
loop1 (Leaves vec) = mkNum vec
loop1 (And vec) | null vec = mkNum empty

| otherwise = mul (map loop2 vec)
loop2 :: OrTree a → b
loop2 (Or vec) | null vec = mkZer

| otherwise = add (map loop1 vec)

Figure 4. The generic solution for satisfiability, parameterized by
a Ringlike object.

are extremely specialized to the constraint system being solved: for
example, SAT solvers have developed a large body of specialized
data structures and parallelization strategies [14, 15].

We are not here concerned with specialized search strategies—
e.g., our goal in this section is not to implement an efficient
SAT solver. Rather we study data-structure trade-offs and paral-
lel control-flow trade-offs when exhaustively searching a space of
possibilities using techniques that apply to any constraint domain
that can be formulated as an LVar. We will then apply the same
techniques to Typed Racket in §6.

In the case of satisfiability, we have a constraint domain that
consists of simple variable assignments, e.g., x=4, closed under
conjunction and disjunction. Thus the input to our algorithm is a
term such as:

((x = 3, y = 4) ∨ (y = 3)) ∧ (y = 3, z = 9)

Represented in our Haskell implementation by the following
data structure, which enforces a normal form where And and Or

alternate, but both are N -ary rather than binary:
type Tree a = Either (AndTree a) (OrTree a)
data AndTree a = And (Vector (OrTree a))

| Leaves (Vector (Var,a))
data OrTree a = Or (Vector (AndTree a))

A simple, compositional solution must represent a stream of
substitutions, each representing possible bindings for variables
within the (sub)term. These solution streams can be combined by
concatenation (Or) or by joining pairs of solutions drawn from the
cartesian product of two streams (And). In fact, the streams form a
ring-like structure, and we can formulate a simple generic solution
abstracted over a set of methods matching the following signature:
data Ringlike leaf -- "leaves" of our computation

elem -- elements of our ring
= Ringlike
{ mkNum :: leaf → elem
, mkZer :: elem
, add :: Vector elem → elem
, mul :: Vector elem → elem
}

This provides a simple algebra for solution streams. The generic
code that walks the Tree and calls the Ringlike methods is listed in
Figure 4, and is used by all the implementations we discuss below.

5.1 The Simplest Stream Algebra
In a sequential Haskell implementation, the natural representation
of solution streams is as a lazy list of variable assignments (Maps),
parameterized over the type of values variables range over, “a”:
type Env a = Map Var a
type Sol1 a = [Env a]

And the algebra over these streams is implemented by:

listStrms :: Eq a ⇒ Ringlike (Vector (Var,a)) (Sol1 a)
listStrms = Ringlike
{ mkNum = λvec → maybeToList (foldlM insert empty vec)
, mkZer = []
, mul = foldl1 (λs1 s2 →

catMaybes [ joinEnvs env1 env2
| env1 ← s1, env2 ← s2 ])

, add = foldl’ (++) []
}

Here the type argument “Vector (Var,a)” represents a block of
variable assignments, and insert is a function that gives the block
an interpretation in terms of Sol1s (inserting the variables into
the Map, and failing if there is a conflict using the Maybe monad).
The cartesian product operation above creates a list of many join

computations, which could be evaluated in parallel. In fact, we
attempted to parallelize in the standard Haskell way by adding
parList or parBuffer annotations to this list, either before or after
the catMaybes call. Unfortunately, this does not yield a parallel
speedup (either for satisfiability or full Typed Racket), because the
genuine parallel work is too entangled with book-keeping on lazy
lists.

5.2 A Parallel Stream Algebra with Generators
As we will see in §6, list-based streams incur a lot of overhead—
intermediate lists are assembled and deconstructed repeatedly. Fur-
ther, the aggressive fusion optimizations performed by GHC and its
libraries cannot eliminate operations like cartesian product.

Fortunately, there are more efficient ways to represent streams,
in particular as generators. Generators have a long history as a
control mechanism in programming languages5. A generator takes
a partial answer and a continuation; it modifies, tests, or bifurcates
the partial answer; and then passes one or more answers on to the
continuation.
type Cont = PartialAns → [PartialAns]
type Generator = Cont → Cont

= Cont → PartialAns → [PartialAns]

Generators can be composed without creating intermediate
lists—only the final step allocates [PartialAns]. Indeed, gener-
ators, formulated in terms of continuations, have been used for this
deforestation benefit in many contexts. Yet there has been little
work on their use in parallel programming6. We can, for exam-
ple, define our answer type to be a computation in the LVish Par

monad, which gives us the following solution type for satisfiability
problems:
type Cont a = Env a → Par ()
type Sol3 a = Cont a → Cont a

contBased :: (. . .) ⇒Ringlike (Vector (Var,a)) (Sol3 a)
contBased = Ringlike { . . . }

A solution stream—the element type of our Ringlike—becomes a
function of the form (λ k w → action), where action constrains
the variable assignment, w, in one or more ways and passes each
variant on to the continuation k.

Further, note that each computation, Par (), does not return
a value. As in CPS (continuation passing style), when using this
formulation we extract a result by attaching a final continuation
that inserts into an output Set or FiltSet LVar.

With this definition for Sol3, we can see that the zero for the al-
gebra is (λk w →return ()), which drops the partial assignment

5 First appearing in the language Alphard in the mid 1970s [29], and later
in CLU [22] and Icon [12]. A clear explanation of generators can be found
in [1].
6 One example in the literature is the related concept of push arrays [5] used
in data-parallel programming.
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w on the floor, not calling the continuation. Likewise the one value
is (λk w →k w). The disjunction, or add operation is the obvious
place to add parallelism:
add s t = λ k w →

do fork (s k w)
t k w

This parallel-OR duplicates the continuation, passing the incom-
plete answer to alternative code paths that extend it in different
ways. Here we show the binary version of the operator, but the
N -ary version in our implementation is a straightforward general-
ization which exposes the parallelism as a parallel loop rather than
a single fork.) Further, we thus far assumed immutable environ-
ments, such that w does not need to be copied before being sent to
different destinations (s and t). We will change that in a moment.

AndPar: first technique The sequential version of binary con-
junction with immutable environments is:
mul s t = λ k w → s (λ x → t k x) w

= λ k → s (t k) = s ◦ t
Indeed, there is no obvious opportunity to parallelize this as long
as environments are immutable. The continuation transformers
are composed, but w is threaded through linearly. Likewise mkNum,
which handles the Leaves of the AndTree:
mkNum vec = λ k w → k (foldl constrain w vec)

With the immutable definition of Env as Map Var a, we must
fold the constraints into the environment before sending it along
to the continuation. It is not possible to extract parallelism here at
the level of the Par monad. (As in the previous section, it would
be possible—but not profitable—to spark the foldl computation,
attempting very fine-grained parallelism within the updates to a
Map.)

If we use LVars to represent the environment, we retain the
generator design but and-parallelism becomes more feasible. We
change the Env to an LVar, such as SatMap a, and each generator
modifies this environment as an effect. Generators representing
conjunctions only perform these effects and always pass the same
environment pointer on to their continuation that they receive. For
example, (k w) below:
mkNum vec = λ k w → do mapM_ (constrain_ w) vec; k w

Depending on the size of vec it is possible to fork the entire
(mapM_ . . .) expression or to turn it into a parallel loop.

AndPar: second technique There is another option for paralleliz-
ing and, but it may result in repeatedly traversing constraints that
are already “settled”. We introduce it visually first and then in code.
Let us visualize each continuation transformer as a
processing stage, pictured as a box. This is a push-
driven form of stream processing, where for every
partial answer pushed to the input stream, the gen-
erator performs some processing and pushes zero
or more partial answers on its output stream, performing both fil-
tration and amplification of the stream. A regular conjunction of
disjunctions is accomplished by chaining these generators sequen-
tially. Indeed, this is our sequential version of mul:

The green arrow corresponds to a partial answer “passing the
test” and moving on to the next round. Our second technique for
performing And-parallelism is to replace the above picture with:

joincart
Prod

Here we take each partial answer, duplicate it, and feed it
through both machines in parallel. The top and bottom boxes may
or may not contain disjunctions. All partial answers that make it
through the gauntlet on the top, are joined with all answers on the
bottom, and, if the join succeeds, passed on. In code, we write this
as:
mul s t = λ k w →
do s1 ← newEmptySet

s2 ← newEmptySet
s3 ← cartesianProd s1 s2
forEach s3 (λ (a,b) → case joinMaybe a b of

Nothing → return ()
Just w2 → k w2)

fork (s w (‘insert‘ s1))
t w (‘insert‘ s2)
return ()

This uses LVars to accumulate the solutions from each branch,
and to take their cartesian product (a monotonic operation, and a
standard on container LVars). There is a delicate trade-off, however,
in applying this technique: first, because the input answer ‘w‘, is
passed to both branches, all the joins we perform redundantly join
the (obviously compatible) information in ‘w‘ with itself. Second,
we have now removed some of the deforestation benefit of genera-
tors by accumulating the partial answers in set LVars. Nevertheless,
we in the next section we will see that this parallel-and technique
is quite effective in typing some Typed Racket programs.

6. Typed Racket Type Checking
Typed Racket [35] is a typed version of Racket [10] that uses
gradual typing [30, 34] to integrate with untyped Racket. In this
paper, we consider only the type checking of typed programs.

Typed Racket’s type system includes a number of features
which combine to make type inference difficult. First, Typed
Racket supports subtyping, which is used widely in a variety of
ways in Racket programs. Second, types include non-disjoint union
types, so that T <: (∪ S T ). Third, overloading on function
types is supported with ordered intersection on function types [32].
Fourth, Typed Racket supports arbitrary equi-recursive types, used
for modeling even simple data structures such as lists.

As a result, Typed Racket, following many other recent lan-
guages, does not attempt complete whole-program type inference
in the fashion of Standard ML. Instead, it employs so-called local
type inference [25] along with bidirectional type checking.

In this setting, the central inference problem is choosing an
instantiation of type variables when a polymorphic function is
applied to concrete arguments. For example, when a Typed Racket
programmer writes:

(map add1 (list 1 2 3 4))

we need to infer that map should be instantiated with the types
Integer and Integer.

As a result, the type inference problem is somewhat simpler
than in a global type inference setting. In the above case, if map
has the type ∀αβ.(α → β) × listof(α) → listof(β), the infer-
ence algorithm must find a substitution for α and β that makes
Integer → Integer a subtype of α → β and listof(Integer) a sub-
type of listof(α).
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However, the inference problem in Typed Racket is made more
complex than this simple example by several factors. First, type
constraints in inference can involve subtyping, not just equal-
ity. Second, Typed Racket produces very large types in several
circumstances—when providing extremely precise specification of
function behavior [32] and when inferring a type for large blocks of
constant data. As a result of these and other issues, Typed Racket is
known to have slow typechecking. In particular, some pathological
cases can have typechecking times measured in minutes. As men-
tioned in the introduction, one case which we use as a benchmark
was removed from the Typed Racket test suite since it took too long
to run.

6.1 The core algorithm
The core of the inference algorithm is an extended form of the
Pierce and Turner [25] algorithm, which handles union types, re-
cursive types, and function overloading. The fundamental idea is
that we grow a set of constraints on the type variables to be in-
ferred based on the actual types of the arguments provided—in
the map above the actual arguments are Integer → Integer and
listof(Integer).

Each constraint is a pair of types: an upper and a lower bound.
Two constraints can be combined by joining the lower bounds
(represented by the ∪ operation) and taking the meet of the up-
per bounds (meets cannot always be represented exactly in Typed
Racket, requiring some approximation.) Inference fails if the con-
straints cross. To solve S <: (µX.T ), the algorithm must unroll
recursive types; to ensure termination, the recursive solver must
also keep a seen set, so that if, while unrolling, the same S <: T is
encountered again, the algorithm terminates successfully.

The additional complexity, and source of or-parallelism, comes
from handling union types and overloaded function types. To make
a type A a subtype of (∪BC), it must merely be a subtype of one
of B or C. Therefore, the standard sequential algorithms as cur-
rently implemented in Typed Racket simply tries to solve A <: B,
and if that fails, tries A <: C. Or-parallelism then enters by try-
ing both of these possibilities simultaneously, suceeding if one suc-
ceeds. For function overloading, which is modeled as intersection
in Typed Racket, we simply consider the dual problem, with similar
implications for parallelism.

Inference in Typed Racket also has the possibility for and-
parallelism. If we wish to constraint (A,B) to be a subtype of
(C,D), this implies a pair of constraints, both of which must
succeed for a full solution.

6.2 Implementing Typed Racket Inference
We first performed a direct port of the infer implementation in
the Typed Racket source code. This function takes the names of
type-variables to constrain, as well as the relevant types for type-
checking a polymorphic function invocation:
infer tvars actualTys formalTys resultTy expectedTy

In order to perform parallelization experiments using LVish,
we port the code and the grammar of types to Haskell with one
omission of functionality—we omit variable arity functions, which
do not occur in our benchmarks. Also, while we keep the structure
of the code the same in this conversion, we substitute some data
structures with idiomatic Haskell counterparts (replacing lists with
sets or maps in places). We refer to this as the “Pure/Seq” version
of the program—purely functional, non-monadic, and sequential.

Refactoring for parallelism Next we rewrite the algorithm in
monadic style and abstract the core constraint-gen (cg) recursion
so that it returns a solution stream as in §5, and factors out the
corresponding methods for conjunction and disjunction. Thus it is
possible to use the same core algorithm with different evaluation

strategies, including sequential or parallel versions. Each imple-
mentation of the type checking solution algebra provides the fol-
lowing functions, which we have given names more appropriate to
the task at hand:

• goodsofar (one) – result indicating no conflicts observed at this
point in the search
• constrain (mkNum) – add an upper and lower bound constraint

on a type variable, apply this to all partial solutions processed
• blowup (zero) – result indicating a conflict found
• orSplit (add) – test N alternative (S <: Ti) subtyping con-

straints, where i ∈ [0, N)

• andPar (mul) – join constraints with (optional) parallelism

Then, using the above, the following is a subset of the cases in
the heart of the subtype checking algorithm, showing each possible
behavior:
-- Make s a subtype of t:
case (s,t) of
(s, t) | (s, t) ∈ seen → goodsofar
(s, t) | s == t → goodsofar
(s, t) | subtype s t → goodsofar
(_, Top) → goodsofar
(Var x, t) | x ∈ xs → constrain bot x (demote vs t)
(s, Rec _ _) → cg s (unfold t)
-- N-way Or-parallelism:
(s, Union ts) → orSplit cg s (elems ts)

(Pair a b, Pair a’ b’) → andPar (cg a a’) (cg b b’)
. . .
_ → blowup -- s cannot be a subtype of t

Solution strategies We implement this parallel algebra of solu-
tion streams while leaving knobs to toggle and-parallelism and or-
parallelism independently at compile time. The andPar function
precisely resembles the code for mul in §5.2. Or-parallelism be-
comes a standard parallel forEach from the LVish library:
orSplit :: (a → a → Solution) → a → [a] → Solution
orSplit msg doConstraints s ts = λ k varmap →
parForEach ts (λt → doConstraints s t k varmap)

Note that the parForEach is an asynchronous operation–it forks
work and returns immediately, without any join.

Testing While we do not run directly on Typed Racket source
programs, we traced calls to Typed Racket subtype checking pro-
cedure, generating a log of over 50,000 test cases that we validate
our Haskell implementations (sequential and parallel) against, con-
firming all cases type check or fail as appropriate. Further, because
we know the typing constraints should form a partial order, we ran-
domly generate types with the QuickCheck library and test lattice
properties—e.g., that everything is above bottom, or the lub of two
constraints is above each of them.

6.3 Typed Racket Evaluation
For our implementation of the core of the Typed Racket inference
algorithm, our evaluation focuses on two different demanding in-
ference problems. First, we consider the case mentioned in the
introduction—a small function that takes minutes to check. Sec-
ond, we consider checking large constant data against a small type.
These are both representative problems that have been identified as
the most serious performance problems for Typed Racket.

“Bigcall”: Higher order functions over extremely polymorphic
inputs Typed Racket supports both polymorphism and over-
loading, and when combined, these can produce computationally-
intensive inference problems. The most significant of these is the
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following7, designed as an example of Typed Racket’s variable-
arity polymorphism [33].
(: map-with-funcs

(All (b a ...)
((a ... -> b) * -> (a ... -> (Listof b)))))

(define (map-with-funcs . fs)
(lambda as
(map (lambda: ([f : (a ... a -> b)]) (apply f as))

fs)))
((map-with-funcs + - * /) 1 2 3 4 5)

This function consumes a variable number of functions, bound to
the list fs and then a variable number of arguments, bound to the
list as. It then applies each function f from the list to all of the
as. We then apply map-with-funcs to a few arithmetic functions,
and apply the result to numbers. The result is a list containing the
sum, difference, product, and division of all five numbers (Racket’s
numeric operations all support arbitrarily many arguments).

The sequence of arguments fs is described in Typed Racket
using variable-arity polymorphism. Since we omit this portion of
the algorithm, we instead consider versions of map-with-funcs
that consume 1, 2, 3, or 4 arguments: i.e., (map-with-funcs + -
*) is the three argument case. We name these bigcall(1) through
bigcall(4) for brevity.

Solving this inference problem requires handling several type
variables, each of which is jointly constrained by all the arguments,
but more importantly, Typed Racket provides very large overloaded
types to give precise specifications to numeric operations such as
(+), which has hundreds of possible types [32]. Since the type
of each arithmetic operator is an intersection, any choice of a
single overload for one can be combined with any choice of an
overload for another input, resulting in a combinatorial explosion
of possibilities. Thus type checking bigcall(4) takes many minutes
to complete in Typed Racket.

“Treecall”: Dealing with large constant data The second chal-
lenge we consider is that of large constant data. Typed Racket sup-
ports flexible and precise types for structured data in s-expression
format. If a large constant is present in a program and no extra an-
notation is provided, it will therefore infer the most precise type,
which can be the same size as the data itself. When a polymorphic
function such as map is applied to this data structure, inference must
process this large type.

To simulate this in a controlled fashion, we designed a bench-
mark which is the equivalent of applying the following function
to progressively larger inputs consisting of trees of symbols and
strings.
(define-type (Tree A) (Rec X (U (Leaf A) (Pair X X))))
(: leftmost : (All (A) (Tree A) -> A))
(define (leftmost t)

(if (pair? t) (leftmost (car t)) (leaf-val t)))

Hence we call this “treecall”, because it calls leftmost on a
constant tree datum. Treecall(N) corresponds to applying leftmost
to a tree of depth N , i.e. with 2N leaves. In a language with a rich
macro system like Racket’s, large compile-time data is a reality,
and is currently a Typed Racket performance problem.

6.3.1 Benchmark Results
We evaluate treecall and bigcall on one desktop-class and one
server-class system, with one Intel Xeon i5-3470, and two Xeon
E5-2670 CPUs, respectively (4 and 16 cores). All experiments were
run using GHC 7.8.3 and all data points are the median of 5 trials.
We distinguish two different kinds of run, where we generate either
all substitutions, or just the first, which we explain further below.

7 Taken from Typed Racket’s online tests at http://git.io/ve4PJw
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Figure 5. Treecall(16), ParAnd case: here scaling stops at eight
cores. We plot time rather than parallel speedup and include mini-
mum and maximum times across all trials in the error bars. In this
way, we can see how runtimes become chaotic after scaling stops.

Figure 6. Treecall(16): Large-constant benchmark of size 216,
desktop platform. Here Or-parallelism is not useful, because in
each binary-Or, one branch is always an immediate dead-end.

Treecall results
Figures 6 and 5 show treecall(16)—the result of applying leftmost

to a constant of size 216 on the desktop and server platforms, re-
spectively. In this benchmark there is only one solution, so “all vs.
first” solution is immaterial. Because of the union in the list type,
(Rec X (U (Leaf A) (Pair X X))), there are many apparent op-
portunities for or-parallelism in this benchmark. However, they are
unprofitable opportunities, because only one of the two branches
will succeed, and the other will fail quickly. The trick here is to not
get derailed by or-parallelism, so that the actual and-parallelism
present (across the large tree) can be exploited.

The original Typed Racket implementation has a particular per-
formance problem with treecall, making it much slower than the
Haskell version8, so we omit a comparison between Racket and
Haskell here. Rather, we evaluate several Haskell implementation
variants. As described in §6, our idiomatic Haskell port is sequen-
tial, and our parallelism version is parameterized so as to take either

8 The use of lists rather than sets in places was one factor that related in a
severe slowdown. We’re still investigating the problems with the original
Typed Racket version. But even the much faster Haskell version still takes
long enough to get a parallel speedup!
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Figure 7. Bigcall(4): Highly polymorphic inputs benchmark on
the desktop platform; shows time, in seconds, to type check
(map-with-funcs + - * /), computing all solutions. Note that the
time for Pure/Seq is too much larger than the LVish version to show
here (7.93s for even the first solution).

a parallel or sequential implementation of conjunction and disjunc-
tion.

• Pure/Seq – original Racket to Haskell port.
• LVish/NoPar – refactored to use the LVish Par monad, and to

use generators to represent solution streams. Still sequential.
• ParAnd – turn on parallel And.
• ParOr – turn on parallel Or.
• ParBoth – turn on parallel And and parallel Or.

As we mentioned, treecall provides unprofitable Or-parallelism
with very poor granularity. For this reason the ParOr variant of
the benchmark not only fails to speed up, but it gets a parallel
slowdown due to useless tasks and threads bouncing between cores.
Not only does the ParAnd variant work well, but ParBoth is fine as
well. ParAnd can cure the problem with or-parallelism in this case,
because the andPar function is essentially the “outer loop”, and it
is this level of tasks that are stolen most in the underlying work-
stealing implementation of the Par monad.

In summary, Treecall(16) takes 1.29s in the pure (non-LVish)
Haskell version on the server platform. Then it gets up to a 7.68×
parallel speedup on the server platform when switching to LVish,
and 3.17× speedup on the desktop platform.

Bigcall results
Next, we evaluate bigcall(3) and bigcall(4)—three and four argu-
ment variants of map-with-funcs. The numbers we report here for
LVish compute all solutions. For bigcall there are a modest number
of solutions (hundreds) for very large search spaces (millions).

There are two distinct opportunities for performance in this
benchmark:

• Deforestation: the Pure/Seq version uses lists to represent
streams, and exploring the search space requires a lot of list
book-keeping.
• Or-parallelism: because of the combinatorial explosion of dif-

ferent possible types for (+), (*) and so on, there should be
plenty of parallel work in exploring this search space in paral-
lel.

Indeed, the LVish version of the program achieves a big speedup
in both these categories. For example, the Pure/Seq Haskell imple-
mentation takes 2.36 seconds to compute all solutions for bigcall(3)
(server platform). Just by deforesting intermediate lists using gen-
erators, LVish achieves a 9.37× speedup over this baseline. And,
even though the remaining time is only a short 0.25s, LVish ParOr

Figure 8. Bigcall(3) and bigcall(4): Parallel speedup on server
platform, three- and four-argument version. Even bigcall(3) is time-
consuming enough to get a good parallel speedup. This graph also
demonstrates the “last core slowdown” which is still a problem with
some parallel programs on GHC 7.8.3.

and ParBoth variants still achieve greater than 7× parallel speedup,
resulting in a total speedups of 70× or higher over the original,
idiomatic Haskell version ported from Racket. The speedup com-
pared to original Racket version would be even greater, because the
Racket version takes 3.0s to compute the first solution to bigcall(3).

Note that in bigcall, computing all solutions is wasteful, with
the purely functional Haskell version (Pure/Seq) taking only 0.18s
as opposed to 2.36s on bigcall(3) to compute the first rather than
all answers on the server platform. However, first, the deforesta-
tion benefit from switching to LVish makes up for the difference.
And, second, even the Pure/Seq Haskell version is faster than the
original Typed Racket implementation, with the original Typed
Racket version taking 3.0s to compute just the first solution to
(map-with-funcs + - *), i.e., bigcall(3).

When scaling to the four-argument version, bigcall(4), LVish
is much faster than the purely functional versions even though it
is computing all solutions. In fact, this example produces only a
few hundred solutions, which is small compared to the size of the
search space. Union types in Typed Racket programs represent
or-parallelism with a very low survival rate—often only one of
the variants in a union matches. For this larger case, the parallel
speedups go to 8.46× (server) and 3.43× (desktop), and total
speedup of LVish over Pure/Seq approaches 80×.

If we are willing to admit nondeterminism, it is extremely
straightforward to have the parallel LVish implementation asyn-
chronously report the first result it finds, and kill the rest of the
runPar session. However, this is counter to our goal of determin-
istic parallelism. In future work, we plan to study the issue of
extracting a deterministic result, in parallel.

7. Related Work
The monad-par system predated LVish and provided IVars as the
sole synchronization construct. Marlow et al. [23] presents paral-
lel type inference as a motivating example, but no implementa-
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tion was evaluated. In fact, any implementation would have been
severely limited due to the restriction that IVars only be written
once. As a result, a given type variable could be constrained a sin-
gle time, which is not compatible with most type systems (includ-
ing Hindley-Milner).

Work on parallel Prolog [6, 13] solves similar issues of And-
and Or-parallelism. Prolog’s control model is distinct from our
LVish implementation, though, due to the presence of nondeter-
minism and the cut predicate. As a result, the data structures used
are specific to logic programming, where ours are more general.

Saraswat and Rinard [27] discuss cc(↓,→), a language for con-
current constraint logic programming. Their system also includes a
notion of blocking reads analogous to the threshold reads of LVars,
and additionally requires that concurrently written constraints be
consistent with one another. It has nondeterministic operations, but
also does identify a subset of operations that retain determinism.
Modern concurrent constraint programming systems are available
in software packages like Gecode [28]—a C++ library. The builtin
constraint types and search strategies would not apply to, e.g.,
Typed Racket typechecking. But one could use such a system as
an alternate starting point for this research: writig new C++ code
to extend the system with new models, propagators, and branch-
ers to handle the type checking. However, the verification or test-
ing burden to ensure this C++ code retains determinism is a much
more difficult obligation than with LVish. In LVish, we must ensure
only that a TyVar LVar’s join function has the appropriate proper-
ties (commutative, associative, idempotence, and absorption). But
join is just a pure function that can be tested for these properties
with QuickCheck or other methods.

Deterministic Search Algorithms In [16], the authors give a de-
terministic parallel algorithm for backtracking search problems.
COMMON-CRCW, their computational model, allows for arbi-
trary concurrent reads, and restricts concurrent writes by requiring
that all threads write the same value.

IBM’s CPLEX system [7] offers a parallel solver for integer
linear programs, with some extensions. Their solver is determinis-
tic, except in the case where the user provides control callbacks,
which allow observation and modification of the state of the paral-
lel search.

8. Conclusion
Type checking in modern type systems is an expensive process,
but not one that has previously been parallelized. We saw how
the LVar framework is one possible way to address this challenge
while also ensuring determinism in addition to gaining parallelism.
We showed substantial parallel scaling and improvement in wall-
clock time on two very different type systems: one very widely
used, with 3.57× parallel speedup, and the other slow and sharply
in need of parallelization, with up to 4.71× and 8.46× parallel-
speedup on our two benchmarks, respectively. We hope to extend
our approach to accommodate choosing a single (first) answer
deterministically, and apply our techniques in the original Typed
Racket implementation.
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