
Third Workshop on Script to Program Evolution

STOP 2012

This year marks the third edition of the STOP workshop series, and a colo-
cation with ECOOP and PLDI in Beijing, China. For this year’s STOP, the
goal was to take stock of the impressive progress on many fronts in our young
area and to hear reports from our colleagues on their current progress and fu-
ture directions. Therefore, we solicited short submissions, collected here, in
preparation for lively discussion at the workshop.

The continued success of STOP is a testament to the hard work of many
people. I would like to especially thank Adam Welc, Jan Vitek, and Arjun
Guha for their assistance in the organization, as well as all the members of the
program committee.

Sam Tobin-Hochstadt (chair)

Program Committee:

Avik Chaudhuri
David Herman
Manuel Hermenegildo
Atsushi Igarashi
Arjun Guha
Ranjit Jhala
Kathryn Gray

1

Status Report: Dependent Types for JavaScript

Ravi Chugh

University of California, San Diego

rchugh@cs.ucsd.edu

David Herman

Mozilla Research

dherman@mozilla.com

Ranjit Jhala

University of California, San Diego

jhala@cs.ucsd.edu

We are developing Dependent JavaScript (DJS), an explicitly-typed
dialect of a large JavaScript subset that features mutable, prototype-
based objects and arrays as well as precise control-flow reasoning.
We desugar DJS programs to a core lambda-calculus with explicit
references following in the style of λJS [3]. Our new type system
operates on desugared programs, building upon techniques from
System D [2] and Alias Types [4]. With our preliminary imple-
mentation, we demonstrate that DJS is expressive enough to reason
about a variety of tricky idioms found in small examples drawn
from several sources, including the popular book JavaScript: The
Good Parts and the SunSpider benchmark suite. In this report, we
provide a brief overview of DJS; more details can be found in [1].

Path Sensitivity. Consider the following function where the type
annotation says that if the input is a number, then so is the re-
turn value, and otherwise it’s a boolean; the “if-then-else” macro
ite p q1 q2 abbreviates the formula (p⇒ q1) ∧ (¬p⇒ q2).

//: x ∶Top → {ν ∣ iteNum(x)Num(ν)Bool(ν)}
function negate(x) {
return (typeof x == "number") ? 0 - x : !x;

}

When checking the true case of the conditional, DJS tracks that x is
a number. Because the subtraction also produces a number, it con-
cludes that the return value has type {ν ∣Num(x) ⇒ Num(ν)}.
In the false case, x is an arbitrary, non-number value, which is safe
to use because the JavaScript negate operator inverts the “truthi-
ness” of any value, not just booleans. So, the return value has type
{ν ∣ ¬Num(x) ⇒ Bool(ν)}. By combining the types of values
stored in x along both branches, DJS verifies that the return type
satisfies its specification.

Refinement Types. Even the simple example above requires so-
phisticated propositional and equational reasoning that depends on
program values. In DJS, we employ refinement types to encode
these relationships and use an SMT solver to discharge logical
validity queries that arise during (sub)type checking. Refinement
types are quite expressive but, by using formulas drawn from a de-
cidable logic, once the programmer has provided annotations on
functions, type checking proceeds automatically. In comparison,
more expressive dependent type systems like Coq rely on the pro-
grammer or heuristics to interactively discharge proof obligations.

Primitive Operators. In DJS, we use refinements to assign pre-
cise types to primitive operators; we show a few below.

typeof ∶∶ x ∶Top → {ν ∣ ν = tag(x)}

! ∶∶ x ∶Top → {ν ∣ ite falsy(x) (ν = true) (ν = false)}

&& ∶∶ x ∶Top → y ∶Top → {ν ∣ ite falsy(x) (ν = x) (ν = y)}

|| ∶∶ x ∶Top → y ∶Top → {ν ∣ ite falsy(x) (ν = y) (ν = x)}

The above types allow DJS to reason about negate and idioms like
if (x && x.f) to guard key lookups and x = x || default
to set default values. Refinement types provide the flexibility to
choose more restrictive types for operators, if desired, to statically
prevent implicit coercions, which often lead to subtle program-
ming errors. For example, we can restrict the negation operator to
boolean values as follows.

! ∶∶ x ∶Bool → {ν ∣ ite (x = false) (ν = true) (ν = false)}

Flow Sensitivity. Consider the following function that is like
negate but first assigns the eventual result in the variable x.

//: x ∶Top → {ν ∣ iteNum(x)Num(ν)Bool(ν)}
function also_negate(x) {
x = (typeof x == "number") ? 0 - x : !x;
return x;

}

To precisely reason about the different types of values stored in
the (imperative) variable x, DJS maintains a flow-sensitive heap
that can be strongly updated at each program point. As a result,
DJS tracks that the updated value of x along the true case is
{ν ∣Num(x) ⇒ Num(ν)} (where x is the formal parameter
initially stored in x) and along the false case is {ν ∣ ¬Num(x) ⇒
Bool(ν)}. Thus, as before, DJS verifies that the return value (the
new value of x) satisfies the specification.

Objects. JavaScript objects make heavy use of property extension
and prototype inheritance to transitively resolve lookups.

var parent = {last: " Smith"};
var child = Object.create(parent);
child.first = "Bob";
child.first + child.last; // "Bob Smith"

For object extension, strong updates allow DJS to track that the
“first” property is added to child. For prototypes, DJS precisely
tracks parent links between objects in the heap, and unrolls proto-
type chains to match the semantics of object operations. For exam-
ple, the type of the value retrieved by child.last is

{ ν ∣ if has(child,“last”) then ν = sel(child,“last”)

elif has(parent,“last”) then ν = sel(parent,“last”)

else ν = undefined }

which is a subtype of {ν ∣ ν = sel(parent,“last”)} given what
we know about child and parent. Furthermore, we use unin-
terpreted heap symbols to reason about portions of the heap that
are statically unknown. This allows DJS to verify that the property
lookup in if (k in x) x[k] does not return undefined (unless
the type of x[k] includes undefined, of course) even when noth-
ing is known about the prototype chain of x.

Arrays as Arrays. Arrays are (mostly) ordinary prototype-based
objects with string keys, but JavaScript programmers (and optimiz-
ing JIT compilers) commonly treat arrays as if they are traditional
“packed” arrays with integer “indices” zero to “size” minus one.
DJS reconciles this discrepancy by maintaining the following in-
variants about every array a ∶∶ Arr(T).

1. a contains the special “length” key.

2. All other “own” keys of a are (strings that coerce to) integers.

3. For all integers i, either a maps the key i to a value of type T ,
or it has no binding for i.

4. All inherited keys of a are “safe” (i.e. non-integer) strings.

Furthermore, we use the uninterpreted predicate packed(a) to de-
scribe arrays that also satisfy the following property, where len(a)
is an uninterpreted function symbol.

5. For all integers i, if i is between zero and len(a) minus one,
then a maps i to a value of type T . Otherwise, a has no binding
for i.

These invariants allow DJS to reason locally (without considering
the prototype chain of a) that for any integer, a[i] produces a
value of type {ν ∣ ν ∶∶ T ∨ ν = undefined}, and that if 0 ≤ i <
len(a), then a[i] definitely has type T . We assign types to array-
manipulating operations, including the Array.prototype.push
and Array.prototype.pop functions that all arrays inherit, to
maintain these invariants and treat packed arrays precisely when
possible.

Tuples. Arrays are used as finite tuples in several idiomatic ways.

var a0 = [0, 1, 2];
var a1 = []; a1[0] = 0; a1[1] = 1; a1[2] = 2;
var a2 = []; a2.push(0); a2.push(1); a2.push(2);

For a1 and a2, DJS is able to track that the array updates — even
when going through the Array.prototype.push native function
that is inherited by a — maintain the invariant that the arrays are
packed. Thus, each of the arrays has the following type.

{ν ∣ ν ∶∶ Arr(Int) ∧ packed(ν) ∧ len(ν) = 3}

Benchmarks. We are actively working on our implementation
(available at ravichugh.com/nested). So far, we have tested
on 300 lines of unannotated benchmarks from several sources in-
cluding JavaScript: The Good Parts and the SunSpider and V8
microbenchmark suites. Figure 1 summarizes our current results,
where for each example: “Un” is the number of (non-whitespace,
non-comment) lines of code in the unannotated benchmark; “Ann”
is the lines of code in the annotated DJS version (including com-
ments because they contain DJS annotations); “Time” is the run-
ning time rounded to the nearest second; and “Queries” is the num-
ber of validity queries issued to Z3 during type checking.

Taken together, the set of benchmarks rely on the gamut of fea-
tures in the type system, requiring type invariants that describe re-
lationships between parent and child objects, between the contents
of imperative variables and arrays across iterations of a loop, and
intersections of function types to encode control-flow invariants.

Annotation Burden and Running Time. As Figure 1 shows, our
annotated benchmarks are approximately 1.7 times as large (70%
overhead) as their unannotated versions on average. In our experi-
ence, a significant portion of the annotation burden is boilerplate
— unrelated to the interesting typing invariants — that fall into a
small number of patterns, which we have started to optimize.

Adapted Benchmark Un Ann Queries Time

JS: The Good Parts

prototypal 18 36 731 2
pseudoclassical 15 23 706 2
functional 19 43 862 8
parts 11 20 605 3

SunSpider
string-fasta 10 18 263 1
access-binary-trees 34 50 2389 23
access-nbody 129 201 4225 39

V8
splay 17 36 571 1

Google Closure Library
typeOf 15 31 1975 52

Other
negate 9 9 296 1
passengers 9 19 310 3
counter 16 24 272 1
dispatch 4 8 219 1

Totals 306 518 13424 137

Figure 1. Benchmarks (Un: LOC without annotations; Ann: LOC
with annotations; Queries: Number of Z3 queries; Time: Running
time in seconds)

The running time of our type checker is acceptable for small
examples, but less so as the number of queries to the SMT solver
increases. We have not yet spent much effort to improve perfor-
mance, but we have implemented a few optimizations that have al-
ready reduced the number of SMT queries. There is plenty of room
for future work to further improve both the annotation overhead as
well as performance.

Conclusion. We have found that the full range of features in DJS
are indeed required, but that many examples fall into patterns that
do not simultaneous exercise all features. Therefore, we believe that
future work on desugaring and on type checking can treat common
cases specially in order to reduce the annotation burden and run-
ning time, and fall back to the full expressiveness of the system
when necessary. In addition, we are working to extend DJS with
support for additional features, including more general support for
recursive types, for the apply and call forms (often used, for ex-
ample, to set up inheritance patterns), and variable-arity functions.
We believe that Dependent JavaScript is a promising approach for
supporting real-world dynamic languages like JavaScript.

References

[1] Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for
JavaScript. April 2012. http://arxiv.org/abs/1112.4106.

[2] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested Refinements:
A Logic for Duck Typing. In POPL, 2012.

[3] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence
of JavaScript. In ECOOP, 2010.

[4] Frederick Smith, David Walker, and Greg Morrisett. Alias Types. In
ESOP, 2000.

ravichugh.com/nested
http://arxiv.org/abs/1112.4106

Minigrace: A progress report

Michael Homer

Victoria University of Wellington

mwh@ecs.vuw.ac.nz

James Noble

Victoria University of Wellington

kjx@ecs.vuw.ac.nz

Abstract

Grace is a new language whose types are structural, gradual, and
optional. Minigrace is a compiler for the Grace language. Minigrace
itself was written with gradual types. We describe the implementa-
tion of the compiler and future challenges for it.

1. Introduction

Minigrace is a compiler for the Grace language [3]. Grace is a
new object-oriented programming language aimed at education.
The language supports both statically- and dynamically-typed code,
along with a mixture of the two, and uses structural types as the
basis for its static type system. Gradual types are intended to support
different ways of teaching programming: an instructor may begin
either with types or without, and introduce the other model later in
the same language, with a smooth transition [1].

Minigrace implements the dynamically-typed part of the lan-
guage and a static typechecker, and is able to run scripts directly or
compile them to native code or JavaScript.

2. Background

The Grace language includes modern language features that have
been useful in software practice, but have not been found together
in the languages used for teaching. The language aims to include
those features that are useful to learn without requiring that they
be taught immediately or in any particular order. Instructors should
have flexibility in structuring courses, and unintroduced features
should not need to appear in code to be explained: the language tries
to eliminate “boilerplate” code found in some languages.

Grace is a class-based language with single inheritance. Objects
can be created from a class or from object literals, and as well as
methods may contain mutable (var) and immutable (def) fields.
Fields automatically define accessor methods of the same name.

Grace uses structural types, as in OCaml, in which the type of an
object depends only on its methods, and not on explicit type names.
Unlike most statically-typed class-based languages, a class in Grace
does not automatically create a type of the same name. When a type
is required the programmer must declare one explicitly containing
the methods they want.

Types are optional; when omitted, code is dynamically-typed.
When dynamic and static types mix gradual type checks at runtime
implicitly preserve safety.

Classes and types can have unerased generic type parameters. A
generic type with the same shape as a non-generic structural type
will conform to that type, and vice-versa.

A Grace method name can have multiple words, each with an
argument list, similar to Smalltalk. These “mixfix” methods allow
the programmer to make the parameter roles clear.

Grace also supports first-class “blocks”, or lambdas, chunks
of code with deferred execution, written inside braces. Blocks
return the value of the last expression in their body, while return

method ifPositive(x : Number) then (b : Block) {
if (x > 0) then {
b.apply

}
}
ifPositive 5 then {
print "5 is positive"

}

Figure 1. User-defined control structure, using a mixfix method
and a block

statements return from the enclosing method. Methods and blocks
create closures when they refer to names defined in the surrounding
code.

The built-in control structures of the language, if ()then()else,
for ()do, and while()do are all defined as methods with multiple
words taking blocks as arguments. A user-defined control structure
could be provided in a library to replace or work alongside them
without appearing any different, as in Figure 1. An instructor can
replace or augment the structures presented to students.

3. Minigrace

Minigrace is a self-hosted compiler for Grace. The compiler targets
native code (via C and LLVM bitcode) and JavaScript that runs in a
commodity web browser. The compiler supports almost all of the
dynamically-typed part of the language and a static typechecker.

The compiler self-hosts on all target platforms and can compile
code with any target from any platform. The compiler makes heavy
use of blocks and multi-word method names and sums to around
10,000 lines of code. As a self-hosted compiler targeting JavaScript,
the compiler itself can be compiled to run in the web browser [4].

Minigrace contains a full static structural typechecker. Code to
be compiled may be written fully statically-typed, fully dynamically-
typed, or a mixture, and these are able to interact fully with each
other. Dynamic code may have types added, and as these are
structural types they are not overly intrusive, instead representing
what the existing code already does.

Development of the compiler has followed a gradual typ-
ing approach. The compiler was originally prototyped entirely
dynamically-typed, without a typechecker present. Later code has
begun to include types.

The native compiler includes mark-and-sweep garbage collection
and optional support for tail recursion. Programs may be written
initially without concern for efficiency and function correctly.

3.1 Development

We first implemented a compiler/interpreter for a minimal subset
of the language using the Parrot Compiler Toolkit, targeting the
Parrot Virtual Machine. This compiler used the in-built grammar
engine for parsing and Perl for linking code, and generated low-level

Parrot AST. We chose to begin here as we were considering Parrot
as a potential target platform and wanted both to assess it for that
purpose and to use its inbuilt parsing and compiling functionalities
to bootstrap the compiler. Having brought this compiler to a minimal
usable level we were able to begin writing Grace code for our later
compiler.

The compiler has a fairly traditional structure with four phases:
lexing, parsing, typechecking, and code generation. We wrote the
lexer first, as our first real Grace program running on the bootstrap
compiler, working on it until it could lex itself, and then the same for
the parser. Once we were parsing correctly we implemented LLVM
bitcode generation.

We chose to target LLVM at first as we were hoping to use
some features (unwind instruction) to implement parts of Grace’s
semantics, but found these features to be less complete than hoped.
We decided to implement a C backend as well, as increasingly much
support code was in the accompanying C runtime library. We found
C easier to debug, and switched to using it as our main backend.

The JavaScript backend was an experiment while waiting for
other material to become available. We were able to produce a code
generator sufficient to compile the compiler itself into runnable
code. With this backend user code can run both natively and on the
web. The compiler can be run in the browser for rapid prototyping
without a full development infrastructure available.

Typechecking and identifier resolution occur together between
parsing and code generation. The checker performs standard struc-
tural subtyping checks, but allows the Dynamic type to pass into
other types freely. Only limited gradual run-time type checking
occurs at method boundaries, although sufficient to catch many
common errors.

A rule of the language is that types are optional, and have no
effect on semantics, so the checker does not make any visible
changes to the semantics of code. The programmer can disable
typechecking altogether at compile time if they wish without
affecting the behaviour of the program.

We developed the typechecker after we had a fully-functioning
compiler using dynamically-typed code. We wanted to prototype
and bootstrap the compiler quickly and did not want either to write
the subtype computation and tree-walking checker or to deal with
type errors that were not currently manifesting during this stage
of development. After the integration of the typechecker new code
could use static types, but still interact smoothly with the existing
codebase.

After the typechecker was added we began adding partial type
annotations to existing code when it was revised. These annotations
caught some errors, although most of our bugs still were logical
errors, rather than issues the typechecker could catch. These “drive-
by” additions of types were also less effective than a more concerted
strategy might have been: in many cases it worked out that an
annotated section was only called from dynamically-typed code
and only called out to other dynamic code, and so the benefit was
limited before run-time checks were added. Gradual types were most
useful after a bug had been found: we could add a type annotation
to prevent the bug being reintroduced or to find other occurrences.

Another author extended the compiler to include a Java backend,
generating Java source code. This was a separate module, though
integrated into the codebase, and was fully statically-typed. The
static module could find errors in itself while collaborating fully
with dynamically-typed code in other modules.

4. Future challenges

4.1 Gradual structural typing

The combination of gradual and structural typing presents a problem
for implementation. In some cases, incorrect types must be allowed

var o := object {
method name {
5

}
}
type Named = {
name −> String

}
method greet(n : Named) {

print "Hello, {n.name}"
}
greet(o)

Figure 2. Example illustrating a difficulty with gradual structural
typing

to pass because they cannot be determined, even dynamically, to be
invalid.

Given the Grace code in Figure 2, the call to greet must be
allowed statically, as o is of type Dynamic. Gradual typing would
insert a runtime typecheck at the call ensuring that the argument was
of the Named type. However, that check must also pass – the name
method returns Dynamic, which must be treated as conforming to
String as well.

Only when the name method is called does the type mismatch
appear, in fully static code. Detecting the problem requires checking
at each assignment or return even in static code, and even that may
not be adequate if the method is not called or the object passed
elsewhere.

Alternatively, some sort of type-checking proxy object, a “chap-
erone” [5] implicitly inserted at the boundary, could limit the type
checks to only those objects actually originating from dynamically-
typed code. This approach would not address cases where the
method is not called and raises additional problems of object identity
and behaviour, potentially affecting semantics. The semantics re-
quired by the language are not yet fully specified, other than noting
that static types should not affect runtime behaviour. Higher-order
contracts [2] or other approaches are also possible. The correct ap-
proach is unclear, as the desired semantics are uncertain and error
messages are especially important in an educational language.

Minigrace currently allows these cases to pass. Only when it
is able to determine that a type error has occurred does it raise an
error. When the type is uncertain it allows the program to execute,
on the basis that otherwise valid programs would be rejected, and
the dynamic type would have very restricted use in interacting with
static code.

5. Conclusion

Minigrace is a compiler for the Grace language, written with a
gradual typing approach. Code compiles to a variety of platforms
and may incorporate a mix of static structural types and dynamic
types.

References

[1] A. P. Black, K. B. Bruce, and J. Noble. Panel: designing the next
educational programming language. In SPLASH/OOPSLA Companion,
pages 201–204. ACM, 2010.

[2] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
ICFP, 2002.

[3] The Grace programming language. http://gracelang.org/.

[4] M. Homer. Minigrace JavaScript backend. http://ecs.vuw.ac.nz/

~mwh/minigrace/js/, 2011-2012.

[5] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt.
Chaperones and impersonators: Run-time support for contracts on higher-
order, stateful values. Technical Report NU-CCIS-12-01, Northeastern
University, 2012.

Improving Tools for JavaScript Programmers

(Position Paper)

Esben Andreasen
Aarhus University

esbena@cs.au.dk

Asger Feldthaus
Aarhus University
asf@cs.au.dk

Simon Holm Jensen
Aarhus University

simonhj@cs.au.dk

Casper S. Jensen
Aarhus University

semadk@cs.au.dk

Peter A. Jonsson
Aarhus University

pjonsson@cs.au.dk

Magnus Madsen
Aarhus University

magnusm@cs.au.dk

Anders Møller
Aarhus University

amoeller@cs.au.dk

ABSTRACT

We present an overview of three research projects that all
aim to provide better tools for JavaScript web application
programmers1: TAJS, which infers static type information
for JavaScript applications using dataflow analysis; JSRefac-
tor, which enables sound code refactorings; and Artemis,
which provides high-coverage automated testing.

1. JAVASCRIPT PROGRAMMERS NEED

BETTER TOOLS

JavaScript contains many dynamic features that allegedly
ease the task of programming modern web applications. Most
importantly, it has a flexible notion of objects: properties are
added dynamically, the names of the properties are dynam-
ically computed strings, the types of the properties are not
fixed, and prototype relations between objects change dur-
ing execution. An experimental study has shown that most
dynamic features in JavaScript are widely used [10].

Such flexibility has a price. It becomes challenging to rea-
son about the behavior of JavaScript programs without ac-
tually running them. To make matters worse, the language
provides no encapsulation mechanisms, except for local vari-
ables in closures. For many kinds of programming errors
that cause compilation errors or runtime errors in other lan-
guages, JavaScript programs keep on running, often with
surprising consequences.

As a consequence, JavaScript programmers must rely on
tedious testing to a much greater extent than necessary with
statically typed languages. Additionally, it is difficult to
foresee the consequences of modifications to the code, so
code refactoring is rarely applied. Unlike the first scripts
that appeared when JavaScript was introduced, today’s Java-
Script programs often contain thousands of lines of code,
so it becomes increasingly important to develop better tool
support for the JavaScript programmers.

1For more information about the projects and tools, see
the website for Center for Advanced Software Analysis at
http://cs.au.dk/CASA.

2. FINDING ERRORS WITH

DATAFLOW ANALYSIS

The TAJS analysis tool infers an abstract state for each
program point in a given JavaScript web application. Such
an abstract state soundly models the possible states that
may appear at runtime and can be used for detecting type-
related errors and dead code. These errors often arise from
wrong function parameters, misunderstandings of the run-
time type coercion rules, or simple typos that can be tedious
to find using testing.

We have approached the development of TAJS in stages.
First, our focus has been on the abstract domain and dataflow
constraints that are required for a sound and reasonably
precise modeling of the basic operations of the JavaScript
language itself and the native objects that are specified in
the ECMAScript standard [3]. This involves an extraordi-
narily elaborate lattice structure and models of the intricate
details of identifier and object property resolution, proto-
type chains, property attributes, scope chains, type coer-
cions, etc. [7]. The resulting static analysis is flow- and
partially context-sensitive. It performs constant propaga-
tion for primitive values and models object references using
recency abstraction. For every expression, the analysis pro-
vides an over-approximation of its possible runtime types
and values, which can be analyzed subsequently to detect
likely errors.

Next, to reason about web application code, we also need
to model the browser API, including the HTML DOM and
the event system, with involves additional hundreds of ob-
jects, functions, and properties [6]. In parallel, we have de-
veloped new techniques for interprocedural dataflow analy-
sis to boost performance. Our lazy propagation technique
is particularly suitable for the large abstract states that we
encounter [8]. More recently, we have taken the first step
of handling common patterns of code that is dynamically
generated using the eval function [5], using the study by
Richards et al. [9] as a starting point.

Altogether, these techniques enable analysis of JavaScript
web applications up to a few thousand lines of code, although
the scalability is naturally highly affected by the complexity
of the code. We have demonstrated that the approach can
infer type information and call graphs with good precision

Figure 1: The TAJS analysis plug-in for Eclipse,
reporting a programming error and highlighting the
type inferred for the selected expression [6].

and provide useful warning messages when type-related er-
rors occur. We envision such information being made avail-
able to the programmer during development; a screenshot
from our prototype plugin for Eclipse is shown in Figure 1.

Our current work focuses on improving the analysis per-
formance. As the average JavaScript programs become larger
and often involve libraries, it becomes increasingly impor-
tant that the scalability of the analysis is improved. Specifi-
cally, we are studying the performance bottlenecks that ap-
pear with applications that use jQuery, using the idea of
correlation tracking that has recently been proposed by Srid-
haran et al. [11].

3. TOOL-SUPPORTED REFACTORING

Refactoring is a popular technique for improving the struc-
ture of programs while preserving their behavior. Tool sup-
port is indispensable for finding the necessary changes when
the programmer suggests a specific refactoring and for en-
suring that the program behavior is preserved. However,
refactoring tools for JavaScript cannot use the techniques
that have been developed for e.g. Java since they rely on
information about static types and class hierarchies. As an
example, no existing mainstream JavaScript IDE can per-
form even apparently simple refactorings, such as, renaming
an object property, in a sound and precise manner.

In the JSRefactor project, we explore the use of pointer
analysis as a foundation for providing better tool support for
refactoring for JavaScript programs [4]. As a starting point
we consider renaming of variables or object properties, but
also more JavaScript-specific refactorings – encapsulation of
properties and extraction of modules – that target program-
ming idioms advocated by influential practitioners [2].

Beside supporting additional refactorings in our frame-
work, an important next step is to improve the scalability
of the underlying pointer analysis. On the theoretical side,
it remains an interesting challenge how to ensure that the
refactoring specifications we provide are sound with respect
to the semantics of JavaScript.

4. AUTOMATED TESTING

Testing JavaScript web applications is tedious but neces-
sary. The goal of the Artemis project is to automate the
production of high-coverage test inputs [1]. This can be
seen as a complementary approach to TAJS. Although test-
ing cannot show absence of errors – in contrast to the static
analysis approach we use in TAJS – one may argue that
dynamic approaches to error detection are better suited for
dynamic languages like JavaScript. As a case in point, eval
causes no complications in Artemis, unlike in TAJS.

The approach we take in Artemis is to apply light-weight
feedback-directed random testing. A test input consists of
a sequence of parameterized events that trigger execution of
code. The Artemis tool monitors the execution to collect
information that suggests promising new inputs that may
improve coverage.

Our first version of Artemis was based on Envjs, which is
a simulated browser environment written in JavaScript, and
included various heuristics for generating and prioritizing
new inputs. We are currently integrating our algorithms into
the more robust WebKit infrastructure and exploring more
powerful heuristics for providing higher and faster coverage
of typical JavaScript applications.

Acknowledgments

We appreciate the contributions to the TAJS, JSRefactor,
and Artemis projects by Kristoffer Just Andersen, Shay Artzi,
Julian Dolby, Matthias Diehn Ingesman, Jacob H.C. Kragh,
Todd Millstein, Max Schäfer, Peter Thiemann, and Frank
Tip. This work was supported by Google, IBM, and The
Danish Research Council for Technology and Production.

5. REFERENCES
[1] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and

F. Tip. A framework for automated testing of
JavaScript web applications. In ICSE’11, May 2011.

[2] D. Crockford. JavaScript: The Good Parts. O’Reilly,
2008.

[3] ECMA. ECMAScript Language Specification, 3rd
edition, 2000. ECMA-262.

[4] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and
F. Tip. Tool-supported refactoring for JavaScript. In
OOPSLA’11, October 2011.

[5] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying
the eval that men do. In ISSTA’12, July 2012.

[6] S. H. Jensen, M. Madsen, and A. Møller. Modeling the
HTML DOM and browser API in static analysis of
JavaScript web applications. In ESEC/FSE’11,
September 2011.

[7] S. H. Jensen, A. Møller, and P. Thiemann. Type
analysis for JavaScript. In SAS’09, August 2009.

[8] S. H. Jensen, A. Møller, and P. Thiemann.
Interprocedural analysis with lazy propagation. In
SAS’10, September 2010.

[9] G. Richards, C. Hammer, B. Burg, and J. Vitek. The
eval that men do - a large-scale study of the use of eval
in JavaScript applications. In ECOOP’11, July 2011.

[10] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behavior of Javascript
programs. In PLDI’10, June 2010.

[11] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and
F. Tip. Correlation tracking for points-to analysis of
JavaScript. In ECOOP’12, June 2012.

2

Big Bang

Designing a Statically-Typed Scripting Language

Pottayil Harisanker Menon Zachary Palmer Alexander Rozenshteyn Scott Smith

The Johns Hopkins University

{pharisa2, zachary.palmer, scott, arozens1}@jhu.edu

Overview

Scripting languages such as Python, Javascript, and Ruby are
here to stay: they are terse, flexible, easy to learn, and can
be used to quickly deploy small to medium-sized applications.
However, scripting language programs run slowly [sho] and are
harder to understand and debug since type information is not
available at compile time. In the last twenty years, several
projects have added static type systems to existing scripting
languages [FAFH09, GJ90, BG93, Age95, FFK+96, THF10],
but this technique has had limited success. The fundamental
problem is that scripting language designs incorporate a number
of decisions made without regard for static typing; adding typ-
ing or engineering optimizations retroactively without breaking
compatibility is challenging. We believe that by starting fresh
and designing a new statically-typed language, a cleaner system
for “scripting-style” programming can be engineered.

This is a position paper outlining Big Bang, a new statically-
typed scripting language. Static typing is feasible because we
design the language and type system around a new, highly-
flexible record-like data structure that we call the onion. Onions
aim to unify imperative, object-oriented, and functional pro-
gramming patterns without making artificial distinctions be-
tween these language paradigms. A subtype constraint infer-
ence type system is used [AW93, Hei94, EST95b, WS01], with
improvements added to increase expressiveness, and to make
the system more intuitively understandable for programmers.

The remainder of this paper describes the onion data com-
binator, the process of typechecking Big Bang, and some prac-
tical considerations involved in its implementation.

Onion-Oriented Programming

At the core of Big Bang is the extremely flexible onion data
combinator. We introduce onions with some simple examples.

At first glance, onions often look like extensible records:
‘name "Sue" & ‘age 27 & ‘height 68 is an onion which simply
combines labeled data items. We call the & operator action
onioning, the combination of data. The only other non-primitive
data constructor needed (beyond arrays) is the ability to label
data (e.g., ‘age 27). The combination of onions, labels,
and functions allows all other data structures to be succinctly
expressed. Onion concatenation, &, is a left-associative operator
which gives rightmost precedence; ‘with 4 & ‘with 5 & ‘and

10 is equivalent to ‘with 5 & ‘and 10 since the ‘with 4

has been overridden.
In Big Bang, every datum is an onion: labeled data (e.g.

‘age 27) is a 1-ary onion and is how a record of one field would
be represented. But unlike records, labels are not required on
data placed in an onion. 5 can be viewed as a 1-ary onion of type
int; 5 & ‘with 4 and "Two" & 2 are also onions. Operators

that have a sensible meaning simply work: for example, (5 &

‘with 4) + 2 returns 7 since addition implicitly projects the
integer from the onion. The case expression is the only explicit
data destructor; for example, case (5 & ‘with 4) in { ‘with

x -> x + 7 } evaluates to 11 because x is bound to the contents
of the ‘with label in the onion. We use (5 & ‘with 4).with

+ 7 as sugar for a single-branch case expression. case is also
used for typecasing; case x of { int -> 4; unit -> 5 }

evaluates to 4 if x is an int and 5 if x is a unit.
The underlying labeled data is mutable, but at the top

level onions are immutable; this key restriction enables flexible
subtyping. So, we can assign to x in the above examples, but we
cannot change or remove the ‘with from the onion in the case
expression. This is in contrast with modern scripting languages
in which object extension is accomplished by mutation. New
onions can, however, be constructed by functional extension.
For instance, consider the following Big Bang code:

def o = ‘x 3 in def o’ = o & ‘y 5 in o’.x + o’.y

Here, o contains only x while o’ contains both x and y.

Objects as onions Onions are additionally self-aware in the
manner of primitive objects [AC96]. Objects are therefore easily
encoded as onions. For example,

def point = ‘x 0 & ‘y 0 &
‘isZero λ_. (self.x == 0 and self.y == 0)

defines a Big Bang point object: the keyword self in a function
in an onion refers to the onion enclosing that function.

Object extension can be modeled through onion extension;
this allows the trivial definition of a mixin object. For instance,

def magMixin = ‘magnitude (λ_. self.x + self.y) in
def mpoint = point & magMixin in mpoint.magnitude ()

would typecheck correctly and evaluate to 0. self is late bound
as is traditional in inheritance and so the self in magMixin will
be all of mpoint when the method is invoked.

Other programming constructs can also be expressed suc-
cinctly with onions. Classes, for instance, are simply syntactic
sugar for objects which contain factory methods for other ob-
jects. Both single and multiple inheritance are modeled simply
as object extension. We also plan to construct modules from
onions, giving Big Bang a simple, lightweight module system.

Typing Big Bang

The Big Bang type system must be extremely expressive to
capture the flexibility of onions and of duck typing. To meet this
requirement, we start with a polymorphic subtype constraint-
based type system and add several novel extensions to improve
expressiveness, usability, and efficiency. The type system is
entirely inference-driven; users are never required to write type
annotations or look at particularly confusing types.

One improvement to existing constraint systems is how
onion concatenation can be flexibly typed – any two onions can
be concatenated and it is fully tracked by the type system. Ex-
isting works on record concatenation [AWL94, Hei94, Pot00] fo-
cus on symmetric concatenation which requires complex “field
absence” information, destroying desirable monotonicity prop-
erties and increasing complexity. Concretely, we conjecture the
monomorphic variant of our inference algorithm is polynomial,
whereas the best known algorithm for concatenation with sub-
typing is NP-complete [PZ04, MW05]. We take a right prece-
dence approach to the case of overlap simply because it is the
way modern languages work: subclasses can override methods
inherited from the superclass. This also resolves the multiple
inheritance diamond problem in the manner of e.g. Python and
Scala by making it asymmetric. Despite keeping only positive
type information, we can also type an onion subtraction op-
eration: Big Bang syntax (‘with 4 & ‘and 5) &- ‘and is
typeable and returns ‘with 4, removing the ‘and label.

In Big Bang, every function is inferred a polymorphic type
(following [WS01, LS08, KLS10], work in turn inspired by
[Shi91, Age95]). Polymorphic function types are then instanti-
ated at the application site. This is done globally, so every po-
tential use of a function is taken into account. The key question
in such an approach is when to stop generating fresh instantia-
tions for the universal quantifier; in face of recursion, the naïve
algorithm will not terminate. Consider the following:
(‘f λn. if n-1 = 0 then 0 else self.f (n-1 & ‘z n)).f 10

Note that self in the function body refers to the full 1-
ary onion containing the label ‘f; thus, the call to self.f is
recursive. This toy example returns 0 at runtime, but it is called
with ten different type parameters: int; int & ‘z int; int & ‘z

(int & ‘z int); and so on. This is termed a polymorphically
recursive function. A standard solution to dealing with such
unbounded cases in program analyses is to simply chop them
off at some fixed point; nCFA is an early example of such an
arbitrary cutoff [Shi91]. While arbitrary cutoffs may work for
program analyses, they make type systems hard for users to
understand and potentially brittle to small refactorings. For Big
Bang we have developed a method extending [LS08, KLS10]
which discovers and naturally merges exactly and only these
recursive contours; there is no fixed bound n.

Lastly, we have developed case constraints, a new form of
conditional type constraints, to accurately follow case branches
when the parameter is statically known; this leads to more
precise and more efficient typing. Case constraints are an
extension of constraint types [Hei94, AWL94, Pot00] but are
also path-sensitive w.r.t. side-effects in case branches. It is well
known that polymorphic subtype constraint systems naturally
encode positive union types via multiple lower bounds; negative
union types are easily encoded by these case constraints.

Gradual tracking in Big Bang The Big Bang type system
is, of course, a conservative approximation and will sometimes
produce false positives. In these cases, a programmer should
add explicit dynamic tracking. Unlike gradual typing, which
starts with dynamic tags on all data and removes tags wherever
possible, gradual tracking starts with no dynamic information
and permits the programmer to incrementally add dynamic tags
as necessary. For example, given a piece of code recursively
iterating over the Big Bang list [1,(),2,(),3,()] , the type
system may not statically know that, e.g., odd elements are
always ints. A Big Bang programmer can still effectively use
this list in two ways, depending the list’s invariant. If the list
simply contains values which are either integers or units, a case

expression can be used to typecase on each element. But if
the list always contains an integer followed by a unit and the

programmer iterates over two elements at a time, the int/unit
alternation will be statically inferred due to the particularly
precise nature of our polyvariant inference algorithm.

The Big Bang type system is also capable of internally rep-
resenting what is traditionally considered dynamic type infor-
mation. For example, consider annotating strings to indicate
that they are safe (such as is done by Django for HTML san-
itization) by for example writing "big" & ‘safe() . Any use
of that onion as a string will implicitly project the string value;
that is, concat ("big" & ‘safe()) "bang" will evaluate
to "bigbang" . We also expect concatenation to handle two
safe strings properly; that is, safeConcat ("big" & ‘safe())

("bang" & ‘safe()) computes to "bigbang" & ‘safe() .
The safeConcat function can check if a string is safe by using
a case expression with a ‘safe x pattern.

Helping programmers understand types Unfortunately,
constraint sets produced by polymorphic subtype constraint-
based type systems are difficult to read and understand; at-
tempts to simplify the constraints [EST95a, Pot01] or to graph-
ically render inferred constraints [FFK+96] have met with only
limited success. We believe these approaches do not abstract
enough information from the underlying constraint sets. To
show the programmer what type of data could be in a vari-
able ob, we provide a shallow view of its possible onion(s); if
ob is a method parameter which is passed either a point or
mpoint (defined above), we show the top-level slice of the set
of disjuncts: {(‘x & ‘y & ‘isZero), (‘x & ‘y & ‘isZero

& ‘magnitude)} . Programmers are then free to interactively
“drill in” to see deeper type structure when needed. Likewise,
type errors are explained interactively; the compiler presents an
error (e.g., “function cannot accept argument of type int”),
the programmer asks for further information about the reason-
ing (either “show why that function cannot accept an int”
or “show how the argument could be an int”), the compiler
responds, and so forth.

Whole program typechecking Because programmers do not
write type annotations in Big Bang, software modules cannot
be coded to a type interface alone. But coding to a type
interface is a shallow notion; many aspects of runtime behavior
cannot be decidably encoded in a type system. Instead of
relying on module boundaries, Big Bang uses a whole-program
typechecking model. This does imply limitations on separate
compilation of modules, although some analysis can still be
done in isolation. Also, type errors will not be caught if no
code activates the program flow on which the type error is
found. But complete unit test coverage is critical in modern
software development and unit tests activate these code paths.
A Big Bang testing tool can statically verify complete unit test
code coverage by checking for unused type constraints (which
imply untested code). This way, code which has not been fully
tested will generate type safety warnings.

Implementing Big Bang To test the Big Bang language de-
sign, we have implemented a typechecker and interpreter in
Haskell. We are now starting on a full compiler implementation
using the LLVM toolchain [LA04]. One particularly challeng-
ing task in compiling Big Bang is the optimization of memory
layout; we must avoid runtime hashing to compute method off-
sets, but the flexibility and incremental construction of onions
makes the static layout problem complex. We intend to build
upon previous work in the area of flexible structure compilation
[Oho95, WDMT02].

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer-
Verlag, 1996.

[Age95] Ole Agesen. The cartesian product algorithm. In
Proceedings ECOOP’95, volume 952 of Lecture Notes
in Computer Science, 1995.

[AW93] A. Aiken and E. L. Wimmers. Type inclusion constraints
and type inference. In Proceedings of the International
Conference on Functional Programming Languages and
Computer Architecture, pages 31–41, 1993.

[AWL94] A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Conference Record of
the Twenty-First Annual ACM Symposium on Principles
of Programming Languages, pages 163–173, 1994.

[BG93] Gilad Bracha and David Griswold. Strongtalk: type-
checking smalltalk in a production environment. In Pro-
ceedings of the eighth annual conference on Object-
oriented programming systems, languages, and appli-
cations, OOPSLA ’93, pages 215–230, New York, NY,
USA, 1993. ACM.

[EST95a] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic
type inference for objects. In OOPSLA ’95 Conference
Proceedings, volume 30(10), pages 169–184, 1995.

[EST95b] Jonathan Eifrig, Scott Smith, and Valery Tri-
fonov. Type inference for recursively constrained
types and its application to OOP. In Math-
ematical Foundations of Programming Seman-
tics, New Orleans, volume 1 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1995.
http://www.elsevier.nl/locate/entcs/volume1.html.

[FAFH09] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster,
and Michael Hicks. Static type inference for Ruby. In
Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pages 1859–1866, New York, NY,
USA, 2009. ACM.

[FFK+96] Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, Stephanie Weirich, and Matthias Felleisen.
Catching bugs in the web of program invariants. In Pro-
ceedings of the ACM SIGPLAN 1996 conference on Pro-
gramming language design and implementation, PLDI
’96, pages 23–32, New York, NY, USA, 1996. ACM.

[GJ90] Justin O. Graver and Ralph E. Johnson. A type system
for smalltalk. In In Seventeenth Symposium on Princi-
ples of Programming Languages, pages 136–150. ACM
Press, 1990.

[Hei94] Nevin Heintze. Set-based analysis of ML programs. In
Proceedings of the 1994 ACM conference on LISP and
functional programming, LFP ’94, pages 306–317, New
York, NY, USA, 1994. ACM.

[KLS10] Aditya Kulkarni, Yu David Liu, and Scott F. Smith. Task
types for pervasive atomicity. In Proceedings of the ACM
international conference on Object oriented program-
ming systems languages and applications, OOPSLA ’10,
pages 671–690, New York, NY, USA, 2010. ACM.

[LA04] C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
International Symposium on Code Generation and Op-
timization, pages 75–86. IEEE, 2004.

[LS08] Y. D. Liu and S. Smith. Pedigree types. In International
Workshop on Aliasing, Confinement and Ownership in
object-oriented programming (IWACO), 2008.

[MW05] Henning Makholm and J. B. Wells. Type inference,
principal typings, and let-polymorphism for first-class
mixin modules. In Proceedings of the tenth ACM SIG-
PLAN international conference on Functional program-
ming, ICFP ’05, pages 156–167, New York, NY, USA,
2005. ACM.

[Oho95] Atsushi Ohori. A polymorphic record calculus and
its compilation. ACM Trans. Program. Lang. Syst.,
17(6):844–895, November 1995.

[Pot00] François Pottier. A 3-part type inference engine. In
Gert Smolka, editor, Proceedings of the 2000 European
Symposium on Programming (ESOP’00), volume 1782
of Lecture Notes in Computer Science, pages 320–335.
Springer Verlag, March 2000.

[Pot01] François Pottier. Simplifying subtyping constraints: a
theory. Inf. Comput., 170:153–183, November 2001.

[PZ04] Jens Palsberg and Tian Zhao. Type inference for record
concatenation and subtyping. Information and Compu-
tation, 189(1):54 – 86, 2004.

[Shi91] Olin Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie-Mellon University,
1991. Available as CMU Technical Report CMU-CS-
91-145.

[sho] shootout.debian.org. The computer language bench-
marks game. http://shootout.alioth.debian.org/.

[THF10] Sam Tobin-Hochstadt and Matthias Felleisen. Logical
types for untyped languages. In Proceedings of the 15th
ACM SIGPLAN international conference on Functional
programming, ICFP ’10, pages 117–128, New York, NY,
USA, 2010. ACM.

[WDMT02] J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn
Turbak. A calculus with polymorphic and polyvariant
flow types. J. Funct. Programming, 200, 2002.

[WS01] Tiejun Wang and Scott F. Smith. Precise constraint-
based type inference for Java. In ECOOP’01, pages
99–117, 2001.

Gradual Specifications for Dimension
Checking, Security, and Access Control

Position Paper

Peter Thiemann

University of Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Abstract

The essence of script to program evolution is that programs are
equipped with specifications after the fact. Most work up to now
has considered typing and verification aspects in these specifica-
tions. We believe that other aspects equally make sense and demon-
strate this view with a discussion of gradual specifications for di-
mension checking and for security, in particular access control.

1. Introduction

Design by Contract (DBC) [8, 9] is the foundation for the construc-
tion of correct and secure software. DBC relies on contracts that
determine the input/output behavior of a software component. This
behavior can be statically verified as well as dynamically checked
by run-time monitoring.

Sometimes the initial development of a software system takes
place without proper attention to design. For example, a prototype
may be created in a scripting language without a properly designed
architecture in mind and without carefully crafted component in-
terfaces. While such a state of affairs is acceptable for a prototype,
it is often the case that such a prototype is further developed to a
final product. However, due to the lack of well-designed interfaces,
it is hard to establish correctness guarantees for such a system af-
ter the fact. Dynamically checked contracts are a proven means to
augment such systems with correctness guarantees (e.g., robustness
with respect to type errors) and gradual types enable the stepwise
adoption of typing to growing parts of the system.

An entirely analogous scenario arises when software is devel-
oped according to an incomplete requirements specification. It is
not unusual for customers to come up with additional requirements
after the development team has converged on an overall design. For
example, customers may suddenly realize that dimension checking,
integrity and confidentiality, or access control are important for cer-
tain parts of their system and demand the adoption of suitable re-
quirements.

Adherence to standard software engineering practices (even the
very general caveat to “anticipate change”) does not save the day
if such cross-cutting requirements are newly imposed. Even a care-
fully designed system may require restructuring to have it success-
fully checked by a static analysis or by a suitable type system. For
such cases, a gradual and evolutionary approach is appropriate. For
each of the above-mentioned properties, we envision contracts that
establish run-time guarantees in a way that can be integrated with
existing static approaches. The considerate placement of contracts
can be employed to immediately guarantee the desired properties
using dynamic enforcement (monitoring) at run time. Afterwards,
the performance and the robustness of the system can be improved
by creating statically checked “islands” in the code that need not be

dynamically monitored. Given enough resources, these islands can
be gradually extended to encompass the entire program.

Dimension checking Dimension types [7] guarantee that the code
does not contain computations that mix up different physical di-
mensions. They ensure that, for example, areas and lengths are
not confused or that imperial and metric units are not improp-
erly mixed up.

A suitable gradual system would augment each value with a
run-time dimension annotation and instrument the arithmetic
operations to propagate these annotations accordingly. The con-
versions into a checked island of the program would strip away
the annotations so that the island can employ plain arithmetic,
whereas the conversions out of the island wrap numbers with
dimension annotations, again.

Integrity and confidentiality Information flow can be encoded in
a type system [12] and statically avoid breaches of confiden-
tiality. Integrity checks can be added by augmenting the type
system in the style demonstrated by the SLam calculus [6].

Disney and Flanagan have proposed a simple type system for
gradual checking of information flow [1], thus giving evidence
for the feasibility of the approach. However, their system ap-
pears to be less expressive than the SLam calculus.

Access control Java enforces access control policies by perform-
ing stack inspection at run time. Pottier and coworkers [10]
show that a suitable type system can statically guarantee most of
these properties without the associated run-time cost. However,
their system cannot model fine-grained policies like disabling
file access based on the particular path name.

In this case, the dynamic enforcement and the type system
both already exist. A gradual approach would be interesting
because it would make it possible to exploit the additional
expressiveness of the run-time enforcement where needed and
to enjoy the improved efficiency elsewhere.

Even in a setting where software is developed with contracts
from the beginning and where the cross-cutting requirements are
known from the start, it can make sense to start out with dynami-
cally checked contracts. As a dynamic contract language can often
express properties that are out of reach of static checking, such an
approach can ensure that the initially stated contracts are as precise
as possible.

In both cases it is often desirable to integrate static checking or
to migrate parts of the system to stating checking. The motivation
for a migration may include concerns for efficiency and robustness.
An integration may also also be required for stating liveness prop-
erties or, as a prominent example from the security realm, nonin-

1 2012/5/23

terference, which is known not to be amenable to pure dynamic
checking [4].

2. A Gradual Approach to Access Control

For contracts based on types, gradual typing [11] provides a mi-
gration path from dynamically checked properties to a statically
verified system. Drawing the analogy, a gradual access control type
system provides a migration path from dynamically enforced ac-
cess control to statically checked access control. In this case, the
type conversions can also serve as boundaries to separate untrusted,
dynamically checked parts of a program from trusted, statically
checked parts. In particular, the dynamically checked parts could
be could generated or downloaded at run time.

We are currently working on such a migration path for a range of
security properties. Besides the integrity and confidentiality proper-
ties, which are captured by standard multi-level security type sys-
tems [12], we are interested in access control on the object level.
This access control differs significantly from the resource control
of Pottier and coworkers[10]. While their system controls access
to resources like the audio subsystem, the file system, or network
communication, our envisaged system is geared at restricting the
objects accessible to a component using path expressions.

In prior work [5], we introduced a contract system of dynam-
ically enforced access permissions with a path-based semantics
which fit well in a verification scenario. To complete the migra-
tion path for verification, a corresponding static access permission
(effect) system is required. To address the security scenario in a
satisfactory way, a different, location-based semantics for dynamic
checking is required along with the corresponding static system. In
this way, we create a methodology for gradual verification and se-
curity hardening of software, in particular for scripting languages,
which facilitates a gradual migration from dynamically checked to
statically verified components.

As a bonus to a purely static system, a gradual system enables
us to include manifestation and focusing where a dynamic check
establishes a property which is then carried through in the static
system. These ideas have been pioneered for types [2, 3] and they
seamlessly extend to a setting which includes security properties.

3. Gradual Access Control for References

To investigate the design space of a gradual system for access
control, we construct a calculus that performs access control for
references with the following syntax.

Mode m ::= 1 | 0
Exp e ::= x | λmx.e | e e | ref a e | !e | e := e

| ∅ | loc e | like e | e ∪ e
| restrict e in e | permit e in e

The base calculus is a call-by-value lambda calculus with ML-style
references. The a annotation of the operator for creating references
is a marker for the allocation sites in a program and it is drawn from
some unspecified set. These markers are usually unique, but that is
not a requirement. We explain the m annotation of the lambda at
the end of this subsection.

The next line of the expression grammar specifies syntax for
constructing designators for sets of references. ∅ stands for the
empty set, loc e expects that e evaluates to a reference ℓ and then
stands for the singleton set {ℓ}. The expression like e also expects
that e evaluates to a reference ℓ, but then it stands for the set of all
references that are allocated with the same allocation site marker as
ℓ. The join operator ∪ just builds the union of two such sets.

The restrict and permit operators in the last line both accept as
their first argument a descriptor of a set of references and restrict the
access rights for the evaluation of their second argument. Writing

restrict e0 in e disallows access to the references designated by
e0 scoped over e whereas permit e0 in e disallows access to all
references not designated by e0 scoped over e.

With “scoped over” we mean that the restriction acts like a
wrapper on e. It recursively restricts the execution below e and all
computations that are executed on behalf of e. That is, if e returns
a function, the body of this function is also restricted, and so on.

If e is a higher-order function and a function g is passed as an
argument, the programmer may choose under which restriction this
function executes. If g is an overriding lambda marked with m = 0,
then it runs with the restriction of its creation site. Otherwise it
inherits the restrictions of its caller and of its creation site.

4. Conclusion

This document is a preliminary investigation of the issues that arise
in a gradual type system for access control. We first argue that such
a system (along with some related systems) makes sense from the
general point of view of software engineering. Then we exhibit a
first design of a suitable calculus that only considers references
instead of objects and access paths.

We are currently working on a type system for a gradual ex-
tension of this calculus. There are still a number of open questions
concerning the correct notion of subtyping and the annotation over-
head. An embedding transformation from a simply-typed lambda
calculus into our system would alleviate that overhead. We have
yet to establish formal properties like type safety and, potentially,
a suitable variation of a blame theorem (in the style of Wadler and
Findler [13]).

References

[1] T. Disney and C. Flanagan. Gradual information flow typing. In STOP

2011, 2011.

[2] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear
types for imperative programming. In Proc. 2002 PLDI, pages 13–24,
Berlin, Germany, June 2002. ACM Press.

[3] C. Flanagan. Hybrid type checking. In S. Peyton Jones, editor,
Proc. 33rd ACM Symp. POPL, pages 245–256, Charleston, South
Carolina, USA, Jan. 2006. ACM Press.

[4] G. L. Guernic, A. Banerjee, T. P. Jensen, and D. A. Schmidt.
Automata-based confidentiality monitoring. In M. Okada and I. Satoh,
editors, ASIAN, volume 4435 of LNCS, pages 75–89. Springer, 2006.

[5] P. Heidegger, A. Bieniusa, and P. Thiemann. Access permission
contracts for scripting languages. In Proc. 39th ACM Symp. POPL,
pages 111–122, Philadelphia, USA, Jan. 2012. ACM Press.

[6] N. Heintze and J. G. Riecke. The SLam calculus: Programming with
security and integrity. In L. Cardelli, editor, Proc. 25th ACM Symp.

POPL, pages 365–377, San Diego, CA, USA, Jan. 1998. ACM Press.

[7] A. Kennedy. Dimension types. In D. Sannella, editor, Proc. 5th ESOP,
volume 788 of LNCS, pages 348–362, Edinburgh, UK, Apr. 1994.
Springer.

[8] B. Meyer. Applying “Design by Contract”. IEEE Computer,
25(10):40–51, Oct. 1992.

[9] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
Upper Saddle River, NJ, USA, 2nd edition, 1997.

[10] F. Pottier, C. Skalka, and S. Smith. A systematic approach to static
access control. ACM TOPLAS, 27(2):344–382, 2005.

[11] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, editor,
21st ECOOP, volume 4609 of LNCS, pages 2–27, Berlin, Germany,
July 2007. Springer.

[12] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. Journal of Computer Security, 4(3):1–21, 1996.

[13] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In
G. Castagna, editor, Proc. 18th ESOP, volume 5502 of LNCS, pages
1–16, York, UK, Mar. 2009. Springer-Verlag.

2 2012/5/23

Towards Gradual Typing in Jython

Michael M. Vitousek Shashank Bharadwaj Jeremy G. Siek

University of Colorado at Boulder

{michael.vitousek, shashank.bharadwaj, jeremy.siek}@colorado.edu

1. Introduction

The Jython implementation of Python for the JVM [1] stands to
benefit greatly from the introduction of gradual typing. In partic-
ular, it may lead to improved program efficiency, static detection
of type errors, and improved modularity of runtime error detection
through blame tracking [2]. However, there are tensions between
these goals. For example, the addition of type annotations to a pro-
gram often causes the compiler to insert casts to mediate between
static and dynamically typed code and these casts incur runtime
overhead [3, 7].

Researchers have demonstrated space efficient blame tracking
for casts involving first-class functions but the technique required
a second value-form at function type, a casted function [4, 5]. The
consequence for compilation is that generated code for function
application must perform a dispatch and thereby incurs overhead,
even for function applications residing in statically typed code. At
Dagstuhl in January, Siek suggested a solution to this problem by
storing the “threesome” as part of the closure representation and
by moving the work of casting from the caller to the callee. In
Section 2 we elaborate on this solution.

After functions, the next major challenge for efficient gradual
typing in Python is how to efficiently implement casts involving
objects. Objects are problematic because Python, as an impera-
tive and dynamically typed language, allows strong updates, that
is, changes to objects that affect their type. This problem has ap-
peared in other guises, such as covariant arrays in Java and changes
in typestate [6]. The approaches to date either guard every read ac-
cess by a runtime type test or require reference counting. Both ap-
proaches impose significant runtime overhead, even for statically
typed code. In Section 3 we propose an alternative in which we
only guard strong updates and only allow the type of an object to
change in a monotonically decreasing fashion with respect to naı̈ve
subtyping.

2. Function casts

We begin by considering the implementation of function casts. The
naı̈ve approach would be to have every cast on a function create
a new function that “wraps” up the function, but this method is
not scalable to situations where a function is repeatedly passed
from static code to dynamic code and vice versa. Consider the
following partially-typed Gradual Jython code, which traverses a
file directory tree, applies a function fun to each file in the structure,
and prints its output:

1: def explore files(files, fun):
2: for file in files:
3: if file.is directory():
4: explore dir(file, fun)
5: else: print fun(file)
6: def explore dir(dir :file, fun:file → str) → unit:
7: explore files(file.members(), fun)

Because a new wrapper is added around fun every time it passed
through from one function to another, there is a O(n) space
blowup, rendering this approach infeasible.

Siek and Wadler developed a partial solution to this issue by
attaching a “threesome” to a casted function and by merging three-
somes when a casted function is cast yet again [4]. While this elim-
inates the O(n) blowup of function wrapping, it also increases the
overhead of function calls, because the compiled call site needs to
check if the value being called is a threesome-wrapped function or
a bare function. As such, the rule for compiling functions becomes

Je1(e2)K =
let f = Je1K in
case f of
| Casted f ′ K ⇒ f ′(Je2K : dom(K)) : cod(K)
| Function f ′ ⇒ f ′.fun(f ′.fvs, Je2K)

We see a path to solving this problem by using a combination
of the naı̈ve wrapping approach and the threesomes approach. In
this formulation, function closures contain pointers to a stored
threesome, in addition to the typical function code and values for
free variables. In a closure that has not been cast, the threesome
is an identity cast. Applying a cast to a closure for the first time
installs a generic wrapper function that performs casting on the
argument, calls the original function, and casts the return value.
Additional casts applied to the closure simply alter the threesome.

With this modification to function closures, call sites are re-
turned to their simple form, with the exception that we pass the
entire closure into the function instead of just its free variables:

Je1(e2)K = let f = Je1K in f.fun(f, Je2K)

The wrapper installed onto casted function bodies accesses the
closure’s threesome to cast the function from its original to its
final type. Uncasted functions, lacking wrappers, simply ignore
the threesome. To enable this treatment of threesomes as data, we
depart from previous work and make threesomes into first-class
entities.

We believe this approach to function casts will suffice to elimi-
nate overhead at the call site of uncasted functions while continuing
to support blame tracking to produce useful error messages.

3. Object casts

Our implementation of function casts relies on the fact that Python
functions are immutable — a property that does not hold for Python
objects. This complicates the design of gradual object casts in

Jython, requiring a different approach from that used for functions.1

3.1 Motivation

The complicating effects of imperative update on gradual typing are
reflected in the following code. This program constructs an object

1 Python does not have mutable reference cells, but a language with ref s
would have to consider similar issues.

obj including a member x with value 10 and calls get ref which
returns a function that is holding a reference to obj . The reference
to obj relies on member x having type int. Upon returning from
get ref, the program mutates obj .x to be a string value and then
calls x ref, which tries to reference member x as an integer.

1: obj :dyn = {x = 10, y = True} #Object initialization
2: def get ref(obj:{x:int, y:dyn}) → (unit → int):
3: return λt:unit. obj .x #Capture typed reference
4: x ref:(unit → int) = get ref(obj)
5: obj .x = “Hello!”
6: print (x ref() + 10)

This program should fail because obj .x is updated to contain a
string but has been casted to int. However, we would like to de-
tect this error without incurring too much overhead on member
accesses, and while still being able to blame the code ultimately
responsible for violating the constraints on the types. This choice
has ramifications for the internal representation of Jython objects.

3.2 Approaches to object casts

We review the traditional approach that relies on access checking
and then present our new approach to object casts.

3.2.1 Access checking

One solution to this problem is to use additional inserted casts to
check that object members conform to their expected types when
accessed. This approach would require a cast or runtime check to
be inserted at the access obj .x at line 3 above. In this case, obj .x
would be cast to int — and in this particular program, the cast
would fail, since at the time that x is finally dereferenced (at line 6)
its value is a str.

This approach maintains the “Pythonic” flexibility of object
updates even when typed variables view objects. On the other
hand, casting members at their access sites adds overhead, and free
field mutation may make it difficult to use an object representation
conducive to fast field access. While we believe we can use JVM
techniques such as InvokeDynamic or MethodHandles to minimize
this overhead, we have the additional problem that the code point
blamed is the access site (line 3), not the location of the update that
invalidated the access’ assumptions (line 5).

3.2.2 Monotonic objects

A second method for performing function casts involves perma-
nently restricting the types of object members when casts are ap-
plied. This approach, which we call “monotonic objects”, requires
that the object itself record the most specific type (the meet with
respect to naı̈ve subtyping [4]) that its members have been viewed
through. Successful casts update the meet as needed. This system
detects the error in the above example at the update — when obj
is passed to get ref, the x field of obj is forever after restricted to
containing ints, and so the update at line 5 fails and is blamed.

This approach enables a representation for objects that enable
fast field lookup from static code. Objects consist of a dictionary,
required for dynamic accesses, and an array of values and their
meet types, as shown in Figure 1. When another, differently-typed
reference is made to an object, its meet types mutate.

Wolff et al. [6] offer an alternative approach in which strong up-
dates are allowed so long as they respect the types of all current ref-
erences to the object. Their approach requires a form of reference
counting that induces significant runtime overhead and it makes the
semantics of the program depend on the speed of the garbage col-
lector. Our monotonic object approach provides a more efficient,
but in some ways less flexible, alternative.

We plan to further investigate monotonic objects and access
checking. The monotonic approach promises more efficient field

DICT
MEMS

x
y

0
1

10
True

dyn
dyn

obj:dyn

DICT
MEMS

x
y

0
1

10
True

int
dyn

obj:dyn obj:{x:int,
 y:dyn}

Figure 1. Representations of obj at line 1 and after line 4.

accesses, but the flow-sensitive restrictions it places on object val-
ues may be problematic in practice, and alternatively we may be
able to reduce the runtime overhead of access checking.

4. Conclusions

Handling casts on nontrivial program data is a critical challenge
for implementing gradual typing in a language like Jython. We
have identified several of the problems that need to be solved to
make gradual typing feasible in Jython — specifically, correct and
efficient function and object casts — and have laid out our current
strategies for confronting these challenges. More work is required
to determine the best approaches, but our work thus far seems
promising and we are confident that these challenges can be solved.

References

[1] The Jython Project. URL http://jython.org.

[2] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In
ACM International Conference on Functional Programming, October
2002.

[3] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
In Trends in Functional Prog. (TFP), page XXVIII, April 2007.

[4] J. G. Siek and P. Wadler. Threesomes, with and without blame. In
POPL ’10, pages 365–376. ACM, 2010.

[5] J. G. Siek, R. Garcia, and W. Taha. Exploring the design space of
higher-order casts. In ESOP ’09, pages 17–31. Springer, 2009.

[6] R. Wolff, R. Garcia, E. Tanter, and J. Aldrich. Gradual typestate.
In Proceedings of the 25th European conference on Object-oriented

programming, ECOOP’11, pages 459–483, Berlin, Heidelberg, 2011.
Springer-Verlag.

[7] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Inte-
grating typed and untyped code in a scripting language. In POPL ’10:

Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 377–388, New York, NY,
USA, 2010. ACM.

